Reaction time indicators for assessing cognitive functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cognitive abilities in neurodegenerative diseases begin to alter much earlier than the main clinical pathomorphological core of the disease develops, while patients for many years do not demonstrate pronounced clinical manifestations amid active functioning compensatory mechanisms. Subsequently, the leading symptom complex formed against the background of decompensation becomes practically insensitive to modern drug treatment. In this regard, the search for early manifestations of cognitive and neurological changes that could serve as reliable markers of the development of the neurodegenerative process, is a relevant task of diagnosing these diseases. Currently, in practical work, psychiatrists and neurologists mostly use blank cognitive tests for screening diagnostics of cognitive disorders based on questionnaires with scaled results, sensitivity of which is high for the stages of advanced disease, but is not enough for the stages of prodrome cognitive impairment. Therefore, the creation of a tool for objective screening of early stages of cognitive impairments, combining efficiency and ease of use, is an important and modern direction of neuroscience. Suggested review aims to analyze and summarize available data on the change in reaction speed at the onset of neurological diseases. The need for modernization of neuropsychological diagnostics with the help of possible integration of sensorimotor tests with computer technology is revealed. It should improve the reliability and accessibility of the screening assessment. It is shown that, apart from simple reaction (SRT), such reaction indicators as reaction time variability (RTV), choice reaction time (RTT) and the dynamic of reaction time are the objective and independent markers of efficiency of information processing by the nervous system.

Full Text

Restricted Access

About the authors

L. M. Khanukhova

La Salute Medical Clinic

Author for correspondence.
Email: l_khanukhova@mail.ru
Russian Federation, Moscow

S. A. Gulyaev

La Salute Medical Clinic; MEPhI National Research Nuclear University

Email: l_khanukhova@mail.ru
Russian Federation, Moscow; Moscow

D. M. Khanukhov

La Salute Medical Clinic

Email: l_khanukhova@mail.ru
Russian Federation, Moscow

References

  1. Айзенк Г. Интеллект: новый взгляд. Вопросы психологии. 1995. № 1. С. 111–129.
  2. Анастази А., Урбина С. А64 Психологическое тестирование. 7-е изд. СПб.: Питер, 2005. 688 с: ил. (Серия «Мастера психологии»). ISBN5-272-00106-0
  3. Ачкасов Е.Е., Руненко С.Д., Таламбум Е.А. и др. Сравнительный анализ современных аппаратно-программных комплексов для исследования и оценки функционального состояния спортсменов. Спортивная медицина: наука и практика. 2011. № 3. С. 7–14.
  4. Бойко Е.И. Время реакции человека. М.: Медицина, 1964.
  5. Болгов В.Н., Тагирова Н.П., Галлямова О.Н., Перепелкин В.В. Использование времени двигательной реакции для определения психологических особенностей бадминтонистов. Ученые записки университета им. П. Ф. Лесгафта. 2018 1 (155): 42–46. https://cyberleninka.ru/article/n/ispolzovanie-vremeni-dvigatelnoy-reaktsii-dlya-opredeleniya-psihologicheskih-osobennostey-badmintonistov
  6. Величковский Б.М. Когнитивная наука: Основы психологии познания. В 2 тт. Т. 1. М.: Смысл: Издательский центр «Академия», 2006. 448 с, 119 с.
  7. Гусев А.Н., Уточкин И.С. Психологические измерения: Теория. Методы: Общепсихологический практикум / А. Н. Гусев, И. С. Уточкин. М.: Аспект Пресс, 2011. 317 с.
  8. Ушаков Д.В. Психология интеллекта и одаренности. (Сер.: Экспериментальные исследования.) М.: Институт психологии РАН, 2011. 464 с.
  9. Abd Razak M.A., Ahmad N.A., Chan Y.Y., Mohamad Kasim N., Yusof M., Abdul Ghani M.K. A, Omar M., Abd Aziz F. A, Jamaluddin R. Validity of screening tools for dementia and mild cognitive impairment among the elderly in primary health care: a systematic review. Public Health. 2019 Apr. 169: 84–92. doi: 10.1016/j.puhe.2019.01.001.
  10. Alexopoulos G.S. Mechanisms and treatment of late-life depression. Transl. Psychiatry. 2019 Aug 5. 9(1): 188. doi: 10.1038/s41398-019-0514-6.
  11. Andriuta D., Diouf M., Roussel M., Godefroy O. Is Reaction Time Slowing an Early Sign of Alzheimer’s Disease? A Meta-Analysis. Dement Geriatr Cogn Disord. 2019; 47(4-6):281–288. doi: 10.1159/000500348.
  12. Bailon O., Roussel M., Boucart M., Krystkowiak P., Godefroy O. Psychomotor slowing in mild cognitive impairment, Alzheimer’s disease and lewy body dementia: mechanisms and diagnostic value. Dement Geriatr Cogn Disord. 2010; 29(5):388–96. doi: 10.1159/000305095.
  13. Bilder R.M., Reise S.P. Neuropsychological tests of the future: How do we get there from here? Clin Neuropsychol. 2019 Feb; 33(2): 220–245.
  14. doi: 10.1080/13854046.2018.1521993.
  15. Bridges D., Pitiot A., MacAskill M. R., Peirce J.W. The timing mega-study: comparing a range of experiment generators, both lab-based and online. Peer J. 2020 Jul 20; 8:e9414. doi: 10.7717/peerj.9414.
  16. Brito M.A., Fernandes J.R., Esteves N.S., Müller V.T., Alexandria D.B., Pérez DIV, Slimani M., Brito C.J., Bragazzi N.L., Miarka B. The Effect of Neurofeedback on the Reaction Time and Cognitive Performance of Athletes: A Systematic Review and Meta-Analysis. Front Hum Neurosci. 2022. Junе 20. 16: 868450. doi: 10.3389/fnhum.2022.868450
  17. Bunce D., MacDonald S. W. S., Hultsch D.F. Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults. Brain and Cognition. 2004. 56 (3): 320–327. doi: 10.1016/j.bandc.2004.08.006
  18. Cai Y., Hausdorff J.M., Bean J.F. et al. Participation in cognitive activities is associated with foot reaction time and gait speed in older adults. Aging Clin Exp Res. 2021. 33: 3191–3198. https://doi.org/10.1007/s40520-020-01583-3
  19. Caires T.A., Bruno A.C. M., Fernandes L.F. R. M., de Oliveira Andrade A., de Souza L.A. P. S., Luvizutto G.J. Choice reaction time can be influenced by intervention protocols after stroke: A systematic review. J. Bodyw. Mov. Ther. 2021. Apr. 26: 207–213. doi: 10.1016/j.jbmt.2020.08.013
  20. Chen K.-C., Weng C.-Y., Hsiao S., Tsao W.-L., Koo M. Cognitive decline and slower reaction time in elderly individuals with mild cognitive impairment. Psychogeriatrics. 2017. Nov. 17(6): 364–370. https://doi.org/10.1111/psyg.12247
  21. Collie A., Makdissi M., Maruff P, Bennell K., McCrory P. Cognition in the days following concussion: comparison of symptomatic versus asymptomatic athletes. J. Neurol. Neurosurg. Psychiatry. 2006. Feb; 77(2):241–5. doi: 10.1136/jnnp.2005.073155
  22. Costa A.S., Dogan I., Schulz J.B., Reetz K. Going beyond the mean: Intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders. The Clinical Neuropsychologist. 2019. doi: 10.1080/13854046.2018.1533587
  23. Cumming T.B., Brodtmann A., Darby D., Bernhardt J. Cutting a long story short: reaction times in acute stroke are associated with longer term cognitive outcomes. J. Neurol. Sci. 2012. Nov 15. 322 (1–2): 102–106. doi: 10.1016/j.jns.2012.07.004
  24. Deary I.J., Der G., Ford G. Reaction times and intelligence differences – A population-based cohort study. Intelligence. 29(5). 389–399. Available. 2001. https://www.sciencedirect.com/science/article/abs/pii/S0160289601000629
  25. Demaree H.A., DeLuca J., Gaudino E.A., Diamond B.J. Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. J. Neurol. Neurosurg. Psychiat. 1999. 67(5):661–3. [PubMed: 10519876]
  26. Der G., Deary I.J. Reaction times match IQ for major causes of mortality: Evidence from a population based prospective cohort study. Intelligence. 2018. Jul.–Aug.; 69:134–145. doi: 10.1016/j.intell.2018.05.005
  27. Der G., Deary I.J. The relationship between intelligence and reaction time varies with age: Results from three representative narrow-age age cohorts at 30, 50 and 69 years. Intelligence. 2017. Sep; 64:89–97. doi: 10.1016/j.intell.2017.08.001
  28. Dinstein I., Heege D.J., Behrmann M. Neural variability: Friend or foe? Trends in Cognitive Sciences. 2015. 19. 322–328. doi: 10.1016/j.tics.2015.04.005
  29. Dumont E., Castellanos-Ryan N., Parent S. et al. Transactional longitudinal relations between accuracy and reaction time on a measure of cognitive flexibility at 5, 6, and 7 years of age. Developmental Science. 2022. Vol. 25. № 5. А. e13254. https://doi.org/10.1111/desc.13254
  30. Dykiert D., Der G., Starr J.M., Deary I.J. Age Differences in Intra-Individual Variability in Simple and Choice Reaction Time: Systematic Review and Meta-Analysis. 2012. PLoS ONE7(10): e45759. doi: 10.1371/journal.pone.0045759
  31. Eppig J., Wambach D., Nieves C., Price C.C., Lamar M., Delano-Wood L., Giovannetti T., Bettcher B.M., Penney D.L., Swenson R., Lippa C., Kabasakalian A., Bondi M.W., Libon D.J. Dysexecutive functioning in mild cognitive impairment: derailment in temporal gradients. J. Int. Neuropsychol. Soc. 2012. Jan. 18(1): 20–28. doi: 10.1017/S1355617711001238
  32. Evarts E.V., Teräväinen H., Calne D.B. Reaction time in Parkinson’s disease. Brain. 1981. Mar. 104(Pt 1):167–186. doi: 10.1093/brain/104.1.167
  33. Fernaeus S.E., Östberg P., Wahlund L.O. Late reaction times identify MCI. Scand. J. Psychol. 2013. Aug. 54(4):283–5. doi: 10.1111/sjop.12053
  34. Główka N., Malik J., Podgórski T., Stemplewski R., Maciaszek J., Ciążyńska J., Zawieja E.E., Chmurzynska A., Nowaczyk P.M., Durkalec-Michalski K. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit – a randomized placebo-controlled crossover trial. J. Int. Soc. Sports. Nutr. 2024. Dec. 21 (1): 2301384. Epub 2024 Jan 16. doi: 10.1080/15502783.2023.2301384
  35. Hartle L., Martorelli M., Balboni G., Souza R., Charchat-Fichman H. Diagnostic accuracy of CompCog: reaction time as a screening measure for mild cognitive impairment. Arq Neuropsiquiatr. 2022 Jun; 80 (6): 570–579. doi: 10.1590/0004-282X-ANP-2021-0099
  36. Haworth J., Phillips M., Newson M., Rogers P.J., Torrens-Burton A., Tales A. Measuring information processing speed in mild cognitive impairment: clinical versus research dichotomy. J. Alzheimers Dis. 2016. Feb 27. 51 (1): 263–275. https://doi.org/10.3233/JAD-150791
  37. Haynes B.I., Bauermeister S., Bunce D. A systematic review of longitudinal associations between reaction time intraindividual variability and age-related cognitive decline or impairment, dementia, and mortality. Journal of the International Neuropsychological Society. 2017. 23 (5): 431–445. doi: 10.1017/S1355617717000236
  38. Holden J., Francisco E., Tommerdahl A., Lensch R., Kirsch B., Zai L., Pearce A.J., Favorov O.V., Dennis R.G. and Tommerdahl M. Methodological Problems With Online Concussion Testing. Front. Hum. Neurosci. 2020. 14:509091. doi: 10.3389/fnhum.2020.509091
  39. Holden J., Francisco E., Lensch R., Tommerdahl A., Kirsch B., Zai L., Dennis R., Tommerdahl M. Accuracy of different modalities of reaction time testing: Implications for online cognitive assessment tools. 2019. https://doi.org/10.1101/726364
  40. Hong Y., Alvarado R.L., Jog A., Greve D.N., Salat D.H. Serial reaction time task performance in older adults with neuropsychologically defined mild cognitive impairment. J. Alzheimers Dis. 2020. Mar. 24; 74(2):491–500. https://doi.org/10.3233/JAD-191323
  41. Jakobsen L.H., Sorensen J.M., Rask I.K., Jensen B.S., Kondrup J. Validation of reaction time as a measure of cognitive function and quality of life in healthy subjects and patients. Nutrition. 2011. May. 27(5): 561–570. doi: 10.1016/j.nut.2010.08.003
  42. Jensen A.R. The theory of intelligence and its measurement. Intelligence. 2011. Vol. 39. № 4. P. 171–177. http://dx.doi.org/10.1016/j.intell.2011.03.004
  43. Jouvent E., Reyes S., De Guio F., Chabriat H. Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease. J. Alzheimers Dis. 2015. 47(2): 413–419. doi: 10.3233/JAD-150083
  44. Khan S., Barve K.H., Kumar M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020; 18 11): 1106–1125. doi: 10.2174/1570159X18666200528142429
  45. Krueger C.E., Bird A.C., Growdon M.E., Jang J.Y., Miller B.L., Kramer J.H. Conflict monitoring in early frontotemporal dementia. Neurology. 2009. Aug 4. 73(5): 349–355. doi: 10.1212/WNL.0b013e3181b04b24
  46. Lau B., Lovell M.R., Collins M.W., Pardini J. Neurocognitive and symptom predictors of recovery in high school athletes. Clin. J. Sport. Med. 2009. May. 19 (3): 216–221. doi: 10.1097/JSM.0b013e31819d6edb
  47. Lee J.J., Chabris C.F. General cognitive ability and the psychological refractory period: individual differences in the mind’s bottleneck. Psychol. Sci. 2013. Jul. 1. 24(7): 1226–1233. doi: 10.1177/0956797612471540
  48. Logan G.D., van Zandt T., Verbruggen F., Wagenmakers E.J. On the ability to inhibit thought and action: general and special theories of an act of control. Psychol. Rev. 2014. Jan. 121(1): 66–95. doi: 10.1037/a0035230
  49. Luks T.L., Oliveira M., Possin K.L. et al. Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia. 2010. 48: 165–170.
  50. MacDonald S. W., Li S.C., Bäckman L. Neural underpinnings of within-person variability in cognitive functioning. Psychol. Aging. 2009. Dec. 24 (4): 792–808. doi: 10.1037/a0017798
  51. Marcopulos B., Lojek E. Introduction to the special issue: are modern neuropsychological assessment methods really “modern”? Reflections on the current neuropsychological test armamentarium. The Clinical Neuropsychologist. 2019. doi: 10.1080/13854046.2018.1560502
  52. Martorelli M., Hartle L., Coutinho G., Mograbi D.C., Chaves D., Silberman C. et al. Diagnostic accuracy of early cognitive indicators in mild cognitive impairment. Dement Neuropsychol. 2020. Dec. 14(4):358–65. https://doi.org/10.1590/1980-57642020dn14-040005
  53. Mathôt S., Schreij D., Theeuwes J. OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav. Res. Methods. 2012. Jun. 44 (2):314–24. doi: 10.3758/s13428-011-0168-7
  54. McDonough I. M., Wood M.M., Miller W.S. Jr. A Review on the Trajectory of Attentional Mechanisms in Aging and the Alzheimer’s Disease Continuum through the Attention Network Test. Yale J. Biol. Med. 2019. Mar. 25. 92(1): 37–51. PMCID: PMC6430165
  55. Meier-Ruge W., Ulrich J., Brühlmann M., Meier E. Age-related white matter atrophy in the human brain. Ann. NY Acad. Sci. 1992. Dec. 26; 673:260–269. doi: 10.1111/j.1749-6632.1992.tb27462.x
  56. Mella N., Fagot D., de Ribaupierre A.. Dispersion in cognitive functioning: Age differences over the lifespan. Journal of Clinical and Experimental Neuropsychology. 2016. 38(1): 111–126. doi: 10.1080/13803395.2015.1089979
  57. Mell N., Fagot D., Lecer T., de Ribaupierre A. Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study. 2015. Memory & Cognition. 43(3). 340–356. doi: 10.3758/s13421-014-0491-1
  58. Mitchell A.J., Beaumont H., Ferguson D., Yadegarfar M., Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr. Scand. 2014. Dec; 130(6):439–51. doi: 10.1111/acps.12336
  59. Möller M.C., Nordin L.E., Bartfai A., Julin P., Li T.Q. Fatigue and Cognitive Fatigability in Mild Traumatic Brain Injury are Correlated with Altered Neural Activity during Vigilance Test Performance. Front Neurol. 2017. Sep. 21. 8: 496. doi: 10.3389/fneur.2017.00496
  60. Mulcahy J.S., Larsson D.E. O., Garfinkel S.N., Critchley H.D. Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage. 2019. Nov. 15. 202: 116072. doi: 10.1016/j.neuroimage.2019.116072
  61. Omerbegovic M. Analysis of heart rate variability and clinical implications. Med. Arh. 2009. 63 (2): 102–105. PMID: 19537668.
  62. Orgeta V., Leung P., Del-Pino-Casado R., Qazi A., Orrell M., Spector A.E., Methley A.M. Psychological treatments for depression and anxiety in dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 2022 Apr. 25. 4 (4): CD009125. doi: 10.1002/14651858.CD009125.pub3
  63. Paraskevopoulou S.E., Coon W.G., Brunner P., Miller K.J., Schalk G. Within-subject reaction time variability: Role of cortical networks and underlying neurophysiological mechanisms. Neuroimage. 2021. Aug. 15. 237: 118127. doi: 10.1016/j.neuroimage.2021.118127
  64. Pearce S.C., Stolwyk R.J., New P.W., Anderson C. Sleep disturbance and deficits of sustained attention following stroke. J. Clin. Exp. Neuropsychol. 2016. 38(1):1–11. doi: 10.1080/13803395.2015.1078295
  65. Peirce J., Gray J.R., Simpson S. et al. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods. 2019. V. 51. № 1. Рp. 195–203. https://doi.org/10.3758/s13428-018-01193-y
  66. Phillips M., Rogers P., Haworth J., Bayer A., Tales A. Intra-individual reaction time variability in mild cognitive impairment and Alzheimer’s disease: gender, processing load and speed factors. PLoS One. 2013. Jun. 10. 8(6):e65712. doi: 10.1371/journal.pone.0065712
  67. Rahman S., Siddique U., Choudhury S., Islam N., Roy A., Basu P., Anand S.S., Islam M.A., Shahi M.S., Nayeem A., Chowdhury M.T. I., Chowdhury M.S. J. H., Taylor J.P., Baker M.R., Baker S.N., Kumar H. Comparing Stop Signal Reaction Times in Alzheimer’s and Parkinson’s Disease. Can. J. Neuro.l Sci. 2022. Sep. 49 (5): 662–671. doi: 10.1017/cjn.2021.184
  68. Robinson D.L., Kertzman C. Visuospatial attention: effects of age, gender, and spatial reference. Neuropsychologia. 1990. 28 (3): 291–301. doi: 10.1016/0028-3932(90)90022-g
  69. Rothwell J., Antal A., Burke D., Carlsen A., Georgiev D., Jahanshahi M., Sternad D., Valls-Solé J., Ziemann U. Central nervous system physiology. Clin. Neurophysiol. 2021. Dec. 132 (12): 3043–3083. doi: 10.1016/j.clinph.2021.09.013
  70. Roy P.C. Kessels: Improving precision in neuropsychological assessment: bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. The Clinical Neuropsychologist. 2018. doi: 10.1080/13854046.2018.1518489
  71. Samad A.G. A., Azizan M.A., Khairuddin H., Johari M.K. Significance of aircraft maintenance personnel’s reaction time during physical workload and mental workload. In: Human-centered technology for a better tomorrow. Lecture notes in mechanical engineering. Singapore: Springer Publ., 2022. Рp. 637–. doi.org/10.1007/978-981-16-4115-2_52
  72. Sano M., Rosen W., Stern Y., Rosen J., Mayeux R. Simple reaction time as a measure of global attention in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 1995. Jan. 1(1):56–61. doi: 10.1017/s1355617700000102
  73. Silverman I.W. Simple reaction time: it is not what it used to be. Am. J. Psychol. 2010. Spring; 123 (1): 39–50. doi: 10.5406/amerjpsyc.123.1.0039
  74. Staub B., Doignon-Camus N., Bacon E., Bonnefond A. Investigating sustained attention ability in the elderly by using two different approaches: inhibiting ongoing behavior versus responding on rare occasions. Acta Psychol. (Amst). 2014. Feb. 146: 51–57. doi: 10.1016/j.actpsy.2013.12.003
  75. Talboom J.S., De Both M.D., Naymik M.A., Schmidt A.M., Lewis C.R., Jepsen W.M., Håberg A.K., Rundek T., Levin B.E., Hoscheidt S., Bolla Y., Brinton R.D., Schork N.J., Hay M., Barnes C.A., Glisky E., Ryan L., Huentelman M.J. Two separate, large cohorts reveal potential modifiers of age-associated variation in visual reaction time performance. NPJ Aging Mech. Dis. 2021. Jul. 1. 7 (1): 14. doi: 10.1038/s41514-021-00067-6
  76. Thayer J.F., Hansen A.L., Saus-Rose E., Johnsen B.H. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav. Med. 2009. Apr. 37 (2): 141–53. doi: 10.1007/s12160-009-9101-z
  77. Tuch D.S., Salat D.H., Wisco J.J., Zaleta A.K., Hevelone N.D., Rosas H.D. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. Natl. Acad. Sci. USA. 2005. Aug. 23. 102 (34): 12212–12217. doi: 10.1073/pnas.0407259102
  78. Vasquez B.P., Binns M.A., Anderson N.D. Response Time Consistency Is an Indicator of Executive Control Rather than Global Cognitive Ability. J. Int. Neuropsychol. Soc. 2018. May. 24 (5): 456–465. doi: 10.1017/S1355617717001266
  79. Verhaeghen P., Salthouse T.A. Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models. Psychol. Bull. 1997. 122: 231–249. doi: 10.1037/0033-2909.122.3.231
  80. Wallert J., Westman E., Ulinder J., Annerstedt M., Terzis B. and Ekman U. Differentiating Patients at the Memory Clinic With Simple Reaction Time Variables: A Predictive Modeling Approach Using Support Vector Machines and Bayesian Optimization. Front. Aging Neurosci. 2018. 10: 144. doi: 10.3389/fnagi.2018.00144
  81. Warden D.L., Bleiberg J., Cameron K.L., Ecklund J., Walter J., Sparling M.B., Reeves D., Reynolds K.Y., Arciero R. Persistent prolongation of simple reaction time in sports concussion. Neurology. 2001. Aug 14. 57 (3): 524–526. doi: 10.1212/wnl.57.3.524
  82. Welford A.T. Reaction time, speed of performance, and age. Ann. NY Acad. Sci. 1988. 515: 1–17. doi: 10.1111/j.1749-6632.1988.tb32958.x
  83. Willoughby M., Hong Y., Hudson K., Wylie A. Between- and within-person contributions of simple reaction time to executive function skills in early childhood. Journal of Experimental Child Psychology. 2020. V. 192. А. 104779. https://doi.org/10.1016/j.jecp.2019.104779
  84. Woods D.L., Wyma J.M., Yund E.W., Herron T.J., Reed B. Factors influencing the latency of simple reaction time. Front Hum. Neurosci. 2015. Mar. 26. 9: 131. doi: 10.3389/fnhum.2015.00131
  85. You J., Zhang Y.R., Wang H.F., Yang M., Feng J.F., Yu J.T., Cheng W. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study. E. Clinical Medicine. 2022. Sep. 23. 53:101665. doi: 10.1016/j.eclinm.2022.101665
  86. Zhang S., Qiu Q., Qian S., Lin X., Yan F., Sun L., Xiao S., Wang J., Fang Y., Li X. Determining Appropriate Screening Tools and Cutoffs for Cognitive Impairment in the Chinese Elderly. Front Psychiatry. 2021. Dec. 2. 12: 773281. doi: 10.3389/fpsyt.2021.773281
  87. Zhao J., Manza P., Wiers C., Song H., Zhuang P., Gu J., Shi Y., Wang G.-J. and He D. Age-Related Decreases in Interhemispheric Resting-State Functional Connectivity and Their Relationship With Executive Function. Front. Aging Neurosci. 2020. 12:20. doi: 10.3389/fnagi.2020.00020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».