Reaction time indicators for assessing cognitive functions
- Authors: Khanukhova L.M.1, Gulyaev S.A.1,2, Khanukhov D.M.1
-
Affiliations:
- La Salute Medical Clinic
- MEPhI National Research Nuclear University
- Issue: Vol 75, No 1 (2025)
- Pages: 3-14
- Section: ОБЗОРЫ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0044-4677/article/view/291218
- DOI: https://doi.org/10.31857/S0044467725010013
- ID: 291218
Cite item
Abstract
Cognitive abilities in neurodegenerative diseases begin to alter much earlier than the main clinical pathomorphological core of the disease develops, while patients for many years do not demonstrate pronounced clinical manifestations amid active functioning compensatory mechanisms. Subsequently, the leading symptom complex formed against the background of decompensation becomes practically insensitive to modern drug treatment. In this regard, the search for early manifestations of cognitive and neurological changes that could serve as reliable markers of the development of the neurodegenerative process, is a relevant task of diagnosing these diseases. Currently, in practical work, psychiatrists and neurologists mostly use blank cognitive tests for screening diagnostics of cognitive disorders based on questionnaires with scaled results, sensitivity of which is high for the stages of advanced disease, but is not enough for the stages of prodrome cognitive impairment. Therefore, the creation of a tool for objective screening of early stages of cognitive impairments, combining efficiency and ease of use, is an important and modern direction of neuroscience. Suggested review aims to analyze and summarize available data on the change in reaction speed at the onset of neurological diseases. The need for modernization of neuropsychological diagnostics with the help of possible integration of sensorimotor tests with computer technology is revealed. It should improve the reliability and accessibility of the screening assessment. It is shown that, apart from simple reaction (SRT), such reaction indicators as reaction time variability (RTV), choice reaction time (RTT) and the dynamic of reaction time are the objective and independent markers of efficiency of information processing by the nervous system.
Full Text

About the authors
L. M. Khanukhova
La Salute Medical Clinic
Author for correspondence.
Email: l_khanukhova@mail.ru
Russian Federation, Moscow
S. A. Gulyaev
La Salute Medical Clinic; MEPhI National Research Nuclear University
Email: l_khanukhova@mail.ru
Russian Federation, Moscow; Moscow
D. M. Khanukhov
La Salute Medical Clinic
Email: l_khanukhova@mail.ru
Russian Federation, Moscow
References
- Айзенк Г. Интеллект: новый взгляд. Вопросы психологии. 1995. № 1. С. 111–129.
- Анастази А., Урбина С. А64 Психологическое тестирование. 7-е изд. СПб.: Питер, 2005. 688 с: ил. (Серия «Мастера психологии»). ISBN5-272-00106-0
- Ачкасов Е.Е., Руненко С.Д., Таламбум Е.А. и др. Сравнительный анализ современных аппаратно-программных комплексов для исследования и оценки функционального состояния спортсменов. Спортивная медицина: наука и практика. 2011. № 3. С. 7–14.
- Бойко Е.И. Время реакции человека. М.: Медицина, 1964.
- Болгов В.Н., Тагирова Н.П., Галлямова О.Н., Перепелкин В.В. Использование времени двигательной реакции для определения психологических особенностей бадминтонистов. Ученые записки университета им. П. Ф. Лесгафта. 2018 1 (155): 42–46. https://cyberleninka.ru/article/n/ispolzovanie-vremeni-dvigatelnoy-reaktsii-dlya-opredeleniya-psihologicheskih-osobennostey-badmintonistov
- Величковский Б.М. Когнитивная наука: Основы психологии познания. В 2 тт. Т. 1. М.: Смысл: Издательский центр «Академия», 2006. 448 с, 119 с.
- Гусев А.Н., Уточкин И.С. Психологические измерения: Теория. Методы: Общепсихологический практикум / А. Н. Гусев, И. С. Уточкин. М.: Аспект Пресс, 2011. 317 с.
- Ушаков Д.В. Психология интеллекта и одаренности. (Сер.: Экспериментальные исследования.) М.: Институт психологии РАН, 2011. 464 с.
- Abd Razak M.A., Ahmad N.A., Chan Y.Y., Mohamad Kasim N., Yusof M., Abdul Ghani M.K. A, Omar M., Abd Aziz F. A, Jamaluddin R. Validity of screening tools for dementia and mild cognitive impairment among the elderly in primary health care: a systematic review. Public Health. 2019 Apr. 169: 84–92. doi: 10.1016/j.puhe.2019.01.001.
- Alexopoulos G.S. Mechanisms and treatment of late-life depression. Transl. Psychiatry. 2019 Aug 5. 9(1): 188. doi: 10.1038/s41398-019-0514-6.
- Andriuta D., Diouf M., Roussel M., Godefroy O. Is Reaction Time Slowing an Early Sign of Alzheimer’s Disease? A Meta-Analysis. Dement Geriatr Cogn Disord. 2019; 47(4-6):281–288. doi: 10.1159/000500348.
- Bailon O., Roussel M., Boucart M., Krystkowiak P., Godefroy O. Psychomotor slowing in mild cognitive impairment, Alzheimer’s disease and lewy body dementia: mechanisms and diagnostic value. Dement Geriatr Cogn Disord. 2010; 29(5):388–96. doi: 10.1159/000305095.
- Bilder R.M., Reise S.P. Neuropsychological tests of the future: How do we get there from here? Clin Neuropsychol. 2019 Feb; 33(2): 220–245.
- doi: 10.1080/13854046.2018.1521993.
- Bridges D., Pitiot A., MacAskill M. R., Peirce J.W. The timing mega-study: comparing a range of experiment generators, both lab-based and online. Peer J. 2020 Jul 20; 8:e9414. doi: 10.7717/peerj.9414.
- Brito M.A., Fernandes J.R., Esteves N.S., Müller V.T., Alexandria D.B., Pérez DIV, Slimani M., Brito C.J., Bragazzi N.L., Miarka B. The Effect of Neurofeedback on the Reaction Time and Cognitive Performance of Athletes: A Systematic Review and Meta-Analysis. Front Hum Neurosci. 2022. Junе 20. 16: 868450. doi: 10.3389/fnhum.2022.868450
- Bunce D., MacDonald S. W. S., Hultsch D.F. Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults. Brain and Cognition. 2004. 56 (3): 320–327. doi: 10.1016/j.bandc.2004.08.006
- Cai Y., Hausdorff J.M., Bean J.F. et al. Participation in cognitive activities is associated with foot reaction time and gait speed in older adults. Aging Clin Exp Res. 2021. 33: 3191–3198. https://doi.org/10.1007/s40520-020-01583-3
- Caires T.A., Bruno A.C. M., Fernandes L.F. R. M., de Oliveira Andrade A., de Souza L.A. P. S., Luvizutto G.J. Choice reaction time can be influenced by intervention protocols after stroke: A systematic review. J. Bodyw. Mov. Ther. 2021. Apr. 26: 207–213. doi: 10.1016/j.jbmt.2020.08.013
- Chen K.-C., Weng C.-Y., Hsiao S., Tsao W.-L., Koo M. Cognitive decline and slower reaction time in elderly individuals with mild cognitive impairment. Psychogeriatrics. 2017. Nov. 17(6): 364–370. https://doi.org/10.1111/psyg.12247
- Collie A., Makdissi M., Maruff P, Bennell K., McCrory P. Cognition in the days following concussion: comparison of symptomatic versus asymptomatic athletes. J. Neurol. Neurosurg. Psychiatry. 2006. Feb; 77(2):241–5. doi: 10.1136/jnnp.2005.073155
- Costa A.S., Dogan I., Schulz J.B., Reetz K. Going beyond the mean: Intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders. The Clinical Neuropsychologist. 2019. doi: 10.1080/13854046.2018.1533587
- Cumming T.B., Brodtmann A., Darby D., Bernhardt J. Cutting a long story short: reaction times in acute stroke are associated with longer term cognitive outcomes. J. Neurol. Sci. 2012. Nov 15. 322 (1–2): 102–106. doi: 10.1016/j.jns.2012.07.004
- Deary I.J., Der G., Ford G. Reaction times and intelligence differences – A population-based cohort study. Intelligence. 29(5). 389–399. Available. 2001. https://www.sciencedirect.com/science/article/abs/pii/S0160289601000629
- Demaree H.A., DeLuca J., Gaudino E.A., Diamond B.J. Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. J. Neurol. Neurosurg. Psychiat. 1999. 67(5):661–3. [PubMed: 10519876]
- Der G., Deary I.J. Reaction times match IQ for major causes of mortality: Evidence from a population based prospective cohort study. Intelligence. 2018. Jul.–Aug.; 69:134–145. doi: 10.1016/j.intell.2018.05.005
- Der G., Deary I.J. The relationship between intelligence and reaction time varies with age: Results from three representative narrow-age age cohorts at 30, 50 and 69 years. Intelligence. 2017. Sep; 64:89–97. doi: 10.1016/j.intell.2017.08.001
- Dinstein I., Heege D.J., Behrmann M. Neural variability: Friend or foe? Trends in Cognitive Sciences. 2015. 19. 322–328. doi: 10.1016/j.tics.2015.04.005
- Dumont E., Castellanos-Ryan N., Parent S. et al. Transactional longitudinal relations between accuracy and reaction time on a measure of cognitive flexibility at 5, 6, and 7 years of age. Developmental Science. 2022. Vol. 25. № 5. А. e13254. https://doi.org/10.1111/desc.13254
- Dykiert D., Der G., Starr J.M., Deary I.J. Age Differences in Intra-Individual Variability in Simple and Choice Reaction Time: Systematic Review and Meta-Analysis. 2012. PLoS ONE7(10): e45759. doi: 10.1371/journal.pone.0045759
- Eppig J., Wambach D., Nieves C., Price C.C., Lamar M., Delano-Wood L., Giovannetti T., Bettcher B.M., Penney D.L., Swenson R., Lippa C., Kabasakalian A., Bondi M.W., Libon D.J. Dysexecutive functioning in mild cognitive impairment: derailment in temporal gradients. J. Int. Neuropsychol. Soc. 2012. Jan. 18(1): 20–28. doi: 10.1017/S1355617711001238
- Evarts E.V., Teräväinen H., Calne D.B. Reaction time in Parkinson’s disease. Brain. 1981. Mar. 104(Pt 1):167–186. doi: 10.1093/brain/104.1.167
- Fernaeus S.E., Östberg P., Wahlund L.O. Late reaction times identify MCI. Scand. J. Psychol. 2013. Aug. 54(4):283–5. doi: 10.1111/sjop.12053
- Główka N., Malik J., Podgórski T., Stemplewski R., Maciaszek J., Ciążyńska J., Zawieja E.E., Chmurzynska A., Nowaczyk P.M., Durkalec-Michalski K. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit – a randomized placebo-controlled crossover trial. J. Int. Soc. Sports. Nutr. 2024. Dec. 21 (1): 2301384. Epub 2024 Jan 16. doi: 10.1080/15502783.2023.2301384
- Hartle L., Martorelli M., Balboni G., Souza R., Charchat-Fichman H. Diagnostic accuracy of CompCog: reaction time as a screening measure for mild cognitive impairment. Arq Neuropsiquiatr. 2022 Jun; 80 (6): 570–579. doi: 10.1590/0004-282X-ANP-2021-0099
- Haworth J., Phillips M., Newson M., Rogers P.J., Torrens-Burton A., Tales A. Measuring information processing speed in mild cognitive impairment: clinical versus research dichotomy. J. Alzheimers Dis. 2016. Feb 27. 51 (1): 263–275. https://doi.org/10.3233/JAD-150791
- Haynes B.I., Bauermeister S., Bunce D. A systematic review of longitudinal associations between reaction time intraindividual variability and age-related cognitive decline or impairment, dementia, and mortality. Journal of the International Neuropsychological Society. 2017. 23 (5): 431–445. doi: 10.1017/S1355617717000236
- Holden J., Francisco E., Tommerdahl A., Lensch R., Kirsch B., Zai L., Pearce A.J., Favorov O.V., Dennis R.G. and Tommerdahl M. Methodological Problems With Online Concussion Testing. Front. Hum. Neurosci. 2020. 14:509091. doi: 10.3389/fnhum.2020.509091
- Holden J., Francisco E., Lensch R., Tommerdahl A., Kirsch B., Zai L., Dennis R., Tommerdahl M. Accuracy of different modalities of reaction time testing: Implications for online cognitive assessment tools. 2019. https://doi.org/10.1101/726364
- Hong Y., Alvarado R.L., Jog A., Greve D.N., Salat D.H. Serial reaction time task performance in older adults with neuropsychologically defined mild cognitive impairment. J. Alzheimers Dis. 2020. Mar. 24; 74(2):491–500. https://doi.org/10.3233/JAD-191323
- Jakobsen L.H., Sorensen J.M., Rask I.K., Jensen B.S., Kondrup J. Validation of reaction time as a measure of cognitive function and quality of life in healthy subjects and patients. Nutrition. 2011. May. 27(5): 561–570. doi: 10.1016/j.nut.2010.08.003
- Jensen A.R. The theory of intelligence and its measurement. Intelligence. 2011. Vol. 39. № 4. P. 171–177. http://dx.doi.org/10.1016/j.intell.2011.03.004
- Jouvent E., Reyes S., De Guio F., Chabriat H. Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease. J. Alzheimers Dis. 2015. 47(2): 413–419. doi: 10.3233/JAD-150083
- Khan S., Barve K.H., Kumar M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020; 18 11): 1106–1125. doi: 10.2174/1570159X18666200528142429
- Krueger C.E., Bird A.C., Growdon M.E., Jang J.Y., Miller B.L., Kramer J.H. Conflict monitoring in early frontotemporal dementia. Neurology. 2009. Aug 4. 73(5): 349–355. doi: 10.1212/WNL.0b013e3181b04b24
- Lau B., Lovell M.R., Collins M.W., Pardini J. Neurocognitive and symptom predictors of recovery in high school athletes. Clin. J. Sport. Med. 2009. May. 19 (3): 216–221. doi: 10.1097/JSM.0b013e31819d6edb
- Lee J.J., Chabris C.F. General cognitive ability and the psychological refractory period: individual differences in the mind’s bottleneck. Psychol. Sci. 2013. Jul. 1. 24(7): 1226–1233. doi: 10.1177/0956797612471540
- Logan G.D., van Zandt T., Verbruggen F., Wagenmakers E.J. On the ability to inhibit thought and action: general and special theories of an act of control. Psychol. Rev. 2014. Jan. 121(1): 66–95. doi: 10.1037/a0035230
- Luks T.L., Oliveira M., Possin K.L. et al. Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia. 2010. 48: 165–170.
- MacDonald S. W., Li S.C., Bäckman L. Neural underpinnings of within-person variability in cognitive functioning. Psychol. Aging. 2009. Dec. 24 (4): 792–808. doi: 10.1037/a0017798
- Marcopulos B., Lojek E. Introduction to the special issue: are modern neuropsychological assessment methods really “modern”? Reflections on the current neuropsychological test armamentarium. The Clinical Neuropsychologist. 2019. doi: 10.1080/13854046.2018.1560502
- Martorelli M., Hartle L., Coutinho G., Mograbi D.C., Chaves D., Silberman C. et al. Diagnostic accuracy of early cognitive indicators in mild cognitive impairment. Dement Neuropsychol. 2020. Dec. 14(4):358–65. https://doi.org/10.1590/1980-57642020dn14-040005
- Mathôt S., Schreij D., Theeuwes J. OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav. Res. Methods. 2012. Jun. 44 (2):314–24. doi: 10.3758/s13428-011-0168-7
- McDonough I. M., Wood M.M., Miller W.S. Jr. A Review on the Trajectory of Attentional Mechanisms in Aging and the Alzheimer’s Disease Continuum through the Attention Network Test. Yale J. Biol. Med. 2019. Mar. 25. 92(1): 37–51. PMCID: PMC6430165
- Meier-Ruge W., Ulrich J., Brühlmann M., Meier E. Age-related white matter atrophy in the human brain. Ann. NY Acad. Sci. 1992. Dec. 26; 673:260–269. doi: 10.1111/j.1749-6632.1992.tb27462.x
- Mella N., Fagot D., de Ribaupierre A.. Dispersion in cognitive functioning: Age differences over the lifespan. Journal of Clinical and Experimental Neuropsychology. 2016. 38(1): 111–126. doi: 10.1080/13803395.2015.1089979
- Mell N., Fagot D., Lecer T., de Ribaupierre A. Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study. 2015. Memory & Cognition. 43(3). 340–356. doi: 10.3758/s13421-014-0491-1
- Mitchell A.J., Beaumont H., Ferguson D., Yadegarfar M., Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr. Scand. 2014. Dec; 130(6):439–51. doi: 10.1111/acps.12336
- Möller M.C., Nordin L.E., Bartfai A., Julin P., Li T.Q. Fatigue and Cognitive Fatigability in Mild Traumatic Brain Injury are Correlated with Altered Neural Activity during Vigilance Test Performance. Front Neurol. 2017. Sep. 21. 8: 496. doi: 10.3389/fneur.2017.00496
- Mulcahy J.S., Larsson D.E. O., Garfinkel S.N., Critchley H.D. Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage. 2019. Nov. 15. 202: 116072. doi: 10.1016/j.neuroimage.2019.116072
- Omerbegovic M. Analysis of heart rate variability and clinical implications. Med. Arh. 2009. 63 (2): 102–105. PMID: 19537668.
- Orgeta V., Leung P., Del-Pino-Casado R., Qazi A., Orrell M., Spector A.E., Methley A.M. Psychological treatments for depression and anxiety in dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 2022 Apr. 25. 4 (4): CD009125. doi: 10.1002/14651858.CD009125.pub3
- Paraskevopoulou S.E., Coon W.G., Brunner P., Miller K.J., Schalk G. Within-subject reaction time variability: Role of cortical networks and underlying neurophysiological mechanisms. Neuroimage. 2021. Aug. 15. 237: 118127. doi: 10.1016/j.neuroimage.2021.118127
- Pearce S.C., Stolwyk R.J., New P.W., Anderson C. Sleep disturbance and deficits of sustained attention following stroke. J. Clin. Exp. Neuropsychol. 2016. 38(1):1–11. doi: 10.1080/13803395.2015.1078295
- Peirce J., Gray J.R., Simpson S. et al. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods. 2019. V. 51. № 1. Рp. 195–203. https://doi.org/10.3758/s13428-018-01193-y
- Phillips M., Rogers P., Haworth J., Bayer A., Tales A. Intra-individual reaction time variability in mild cognitive impairment and Alzheimer’s disease: gender, processing load and speed factors. PLoS One. 2013. Jun. 10. 8(6):e65712. doi: 10.1371/journal.pone.0065712
- Rahman S., Siddique U., Choudhury S., Islam N., Roy A., Basu P., Anand S.S., Islam M.A., Shahi M.S., Nayeem A., Chowdhury M.T. I., Chowdhury M.S. J. H., Taylor J.P., Baker M.R., Baker S.N., Kumar H. Comparing Stop Signal Reaction Times in Alzheimer’s and Parkinson’s Disease. Can. J. Neuro.l Sci. 2022. Sep. 49 (5): 662–671. doi: 10.1017/cjn.2021.184
- Robinson D.L., Kertzman C. Visuospatial attention: effects of age, gender, and spatial reference. Neuropsychologia. 1990. 28 (3): 291–301. doi: 10.1016/0028-3932(90)90022-g
- Rothwell J., Antal A., Burke D., Carlsen A., Georgiev D., Jahanshahi M., Sternad D., Valls-Solé J., Ziemann U. Central nervous system physiology. Clin. Neurophysiol. 2021. Dec. 132 (12): 3043–3083. doi: 10.1016/j.clinph.2021.09.013
- Roy P.C. Kessels: Improving precision in neuropsychological assessment: bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. The Clinical Neuropsychologist. 2018. doi: 10.1080/13854046.2018.1518489
- Samad A.G. A., Azizan M.A., Khairuddin H., Johari M.K. Significance of aircraft maintenance personnel’s reaction time during physical workload and mental workload. In: Human-centered technology for a better tomorrow. Lecture notes in mechanical engineering. Singapore: Springer Publ., 2022. Рp. 637–. doi.org/10.1007/978-981-16-4115-2_52
- Sano M., Rosen W., Stern Y., Rosen J., Mayeux R. Simple reaction time as a measure of global attention in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 1995. Jan. 1(1):56–61. doi: 10.1017/s1355617700000102
- Silverman I.W. Simple reaction time: it is not what it used to be. Am. J. Psychol. 2010. Spring; 123 (1): 39–50. doi: 10.5406/amerjpsyc.123.1.0039
- Staub B., Doignon-Camus N., Bacon E., Bonnefond A. Investigating sustained attention ability in the elderly by using two different approaches: inhibiting ongoing behavior versus responding on rare occasions. Acta Psychol. (Amst). 2014. Feb. 146: 51–57. doi: 10.1016/j.actpsy.2013.12.003
- Talboom J.S., De Both M.D., Naymik M.A., Schmidt A.M., Lewis C.R., Jepsen W.M., Håberg A.K., Rundek T., Levin B.E., Hoscheidt S., Bolla Y., Brinton R.D., Schork N.J., Hay M., Barnes C.A., Glisky E., Ryan L., Huentelman M.J. Two separate, large cohorts reveal potential modifiers of age-associated variation in visual reaction time performance. NPJ Aging Mech. Dis. 2021. Jul. 1. 7 (1): 14. doi: 10.1038/s41514-021-00067-6
- Thayer J.F., Hansen A.L., Saus-Rose E., Johnsen B.H. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav. Med. 2009. Apr. 37 (2): 141–53. doi: 10.1007/s12160-009-9101-z
- Tuch D.S., Salat D.H., Wisco J.J., Zaleta A.K., Hevelone N.D., Rosas H.D. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc. Natl. Acad. Sci. USA. 2005. Aug. 23. 102 (34): 12212–12217. doi: 10.1073/pnas.0407259102
- Vasquez B.P., Binns M.A., Anderson N.D. Response Time Consistency Is an Indicator of Executive Control Rather than Global Cognitive Ability. J. Int. Neuropsychol. Soc. 2018. May. 24 (5): 456–465. doi: 10.1017/S1355617717001266
- Verhaeghen P., Salthouse T.A. Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models. Psychol. Bull. 1997. 122: 231–249. doi: 10.1037/0033-2909.122.3.231
- Wallert J., Westman E., Ulinder J., Annerstedt M., Terzis B. and Ekman U. Differentiating Patients at the Memory Clinic With Simple Reaction Time Variables: A Predictive Modeling Approach Using Support Vector Machines and Bayesian Optimization. Front. Aging Neurosci. 2018. 10: 144. doi: 10.3389/fnagi.2018.00144
- Warden D.L., Bleiberg J., Cameron K.L., Ecklund J., Walter J., Sparling M.B., Reeves D., Reynolds K.Y., Arciero R. Persistent prolongation of simple reaction time in sports concussion. Neurology. 2001. Aug 14. 57 (3): 524–526. doi: 10.1212/wnl.57.3.524
- Welford A.T. Reaction time, speed of performance, and age. Ann. NY Acad. Sci. 1988. 515: 1–17. doi: 10.1111/j.1749-6632.1988.tb32958.x
- Willoughby M., Hong Y., Hudson K., Wylie A. Between- and within-person contributions of simple reaction time to executive function skills in early childhood. Journal of Experimental Child Psychology. 2020. V. 192. А. 104779. https://doi.org/10.1016/j.jecp.2019.104779
- Woods D.L., Wyma J.M., Yund E.W., Herron T.J., Reed B. Factors influencing the latency of simple reaction time. Front Hum. Neurosci. 2015. Mar. 26. 9: 131. doi: 10.3389/fnhum.2015.00131
- You J., Zhang Y.R., Wang H.F., Yang M., Feng J.F., Yu J.T., Cheng W. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study. E. Clinical Medicine. 2022. Sep. 23. 53:101665. doi: 10.1016/j.eclinm.2022.101665
- Zhang S., Qiu Q., Qian S., Lin X., Yan F., Sun L., Xiao S., Wang J., Fang Y., Li X. Determining Appropriate Screening Tools and Cutoffs for Cognitive Impairment in the Chinese Elderly. Front Psychiatry. 2021. Dec. 2. 12: 773281. doi: 10.3389/fpsyt.2021.773281
- Zhao J., Manza P., Wiers C., Song H., Zhuang P., Gu J., Shi Y., Wang G.-J. and He D. Age-Related Decreases in Interhemispheric Resting-State Functional Connectivity and Their Relationship With Executive Function. Front. Aging Neurosci. 2020. 12:20. doi: 10.3389/fnagi.2020.00020
Supplementary files
