Antiproliferative effect of L1CAM-specific aptamers in human glioblastoma cell cultures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Glioblastoma remains an uncurable form of brain tumor. Existing methods of therapy allows to insignificantly prolong patient’s lifespan with this diagnosis. Thus, it is necessary to search for new approaches and develop new principals of glioblastoma therapy. In this paper, we describe the principle of impact on glioblastoma tumor cells, which consists in targeted inhibition of the proliferation of L1CAM-positive cells using aptamers. L1CAM is considered to be a marker of tumor glioma stem cells, the presence of which in a tumor may be responsible for resistance to therapy. As a result of the work, the yly12 aptamer was selected from a panel of aptamers for L1CAM and its antiproliferative effect was shown, which was more pronounced on human glioblastoma cells with increased expression of L1CAM. Thus, the effect can solve the problem of glioblastoma cell resistance and prevent tumor recurrence by influencing cancer glioma stem cells.

Full Text

Restricted Access

About the authors

V. A. Kolesnikova

Institute of Higher Nervous Activity and Neurophysiology of RAS

Author for correspondence.
Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow

A. K. Mitina

Pirogov Russian National Research Medical University

Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow

A. V. Ryabova

Natural Sciences Center of Prokhorov General Physics Institute RAS

Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow

L. V. Fab

Institute of Higher Nervous Activity and Neurophysiology of RAS

Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow

I. N. Pronin

Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation

Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow

G. V. Pavlova

Institute of Higher Nervous Activity and Neurophysiology of RAS; Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation; Sechenov First Moscow State Medical University

Email: v.kolesnikova@ihna.ru
Russian Federation, Moscow; Moscow; Moscow

References

  1. Almeida Magalhães T. de, Cruzeiro G. A.V., Sousa G. R. de, Silva K. R. da, Lira R. C.P., Scrideli C. A., Tone L. G., Valera E. T., Borges K. S. Notch pathway in ependymoma RELA-fused subgroup: upregulation and association with cancer stem cells markers expression. Cancer Gene. Ther. 2020. 27 (6): 509–512.
  2. Angiolini F., Belloni E., Giordano M., Campioni M., Forneris F., Paronetto M. P., Lupia M., Brandas C., Pradella D., Matteo A. Di, Giampietro C., Jodice G., Luise C., Bertalot G., Freddi S., Malinverno M., Irimia M., Moulton J. D., Summerton J., Chiapparino A., Ghilardi C., Giavazzi R., Nyqvist D., Gabellini D., Dejana E., Cavallaro U., Ghigna C. A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. Elife. 2019. 8: 1–27.
  3. Aum D. J., Kim D. H., Beaumont T. L., Leuthardt E. C., Dunn G. P., Kim A. H. Molecular and cellular heterogeneity: The hallmark of glioblastoma Neurosurg. Focus 2014. 37 (6): 1–11.
  4. Bao S., Wu Q., Li Z., Sathornsumetee S., Wang H., Mc Lendon R.E., Hjelmeland A. B., Rich J. N. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2009. 68 (15): 6043–6048.
  5. Biserova K., Jakovlevs A., Uljanovs R., Strumfa I. Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021. 10 (3): 1–20.
  6. Bouchard P. R., Hutabarat R. M., Thompson K. M. Discovery and development of therapeutic aptamers. Annu. Rev. Pharmacol. Toxicol. 2010. 50: 237–257.
  7. Caruso R., Pesce A., Wierzbicki V. A very rare case report of long-term survival: A patient operated on in 1994 of glioblastoma multiforme and currently in perfect health Int. J. Surg. Case Rep. 2017. 33: 41–43.
  8. Cheng L., Wu Q., Huang Z., Guryanova O. A., Huang Q., Shou W., Rich J. N., Bao S. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J. 2011. 30 (5): 800–813.
  9. Cheriyamundath S., Ben-Ze’ev A. Wnt/β-catenin target genes in colon cancer metastasis: The special case of l1cam. Cancers (Basel). 2020. 12 (11): 1–13.
  10. Giordano M., Cavallaro U. Different shades of l1cam in the pathophysiology of cancer stem cells. J. Clin. Med. 2020. 9 (5): 1502.
  11. Guo J. C., Xie Y. M., Ran L. Q., Cao H. H., Sun C., Wu J. Y., Wu Z. Y., Liao L. Di, Zhao W. J., Fang W. K., Li E. M., Xu L. Y., Schachner M., Xie J. J. L1CAM drives oncogenicity in esophageal squamous cell carcinoma by stimulation of ezrin transcription. J. Mol. Med. 2017. 95 (12): 1355–1368.
  12. Herron L. R., Hill M., Davey F., Gunn-Moore F. J. The intracellular interactions of the L1 family of cell adhesion molecules. Biochem. J. 2009. 419 (3): 519–531.
  13. Jhanwar-Uniyal M., Labagnara M., Friedman M., Kwasnicki A., Murali R. Glioblastoma: Molecular pathways, stem cells and therapeutic targets. Cancers (Basel). 2015. 7 (2): 538–555.
  14. Kelly L., Maier K. E., Yan A., Levy M. A comparative analysis of cell surface targeting aptamers. Nat. Commun. 2021 12 (1): 6275.
  15. Li G., Chen Z., Hu Y. De, Wei H., Li D., Ji H., Wang D. L. Autocrine factors sustain glioblastoma stem cell selfrenewal. Oncol. Rep. 2009. 21 (2): 419–424.
  16. Louis D. N., Perry A., Wesseling P., Brat D. J., Cree I. A., Figarella-Branger D., Hawkins C., Ng H. K., Pfister S. M., Reifenberger G., Soffietti R., Deimling A. Von, Ellison D. W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro. Oncol. 2021. 23 (8): 1231–1251.
  17. Maness P. F., Schachner M. Neural recognition molecules of the immunoglobulin superfamily: Signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 2007 10 (1): 19–26.
  18. Maten M. V., Reijnen C., Pijnenborg J. M.A., Zegers M. M. L1 cell adhesion molecule in cancer, a systematic review on domain-specific functions. Int. J. Mol. Sci. 2019. 20 (17): 4180.
  19. Mesrati M. H., Syafruddin S. E., Mohtar M. A., Syahir A. CD44: A multifunctional mediator of cancer progression. Biomolecules. 2021. 11 (12): 1850.
  20. Morath I., Hartmann T. N., Orian-Rousseau V. CD44: More than a mere stem cell marker. Int. J. Biochem. Cell Biol. 2016. 81: 166–173.
  21. Ostrom Q. T., Cioffi G., Waite K., Kruchko C., BarnholtzSloan J.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro. Oncol. 2021. 23 (12 Suppl 2): iii1–iii105.
  22. Pesenti C., Navone S. E., Guarnaccia L., Terrasi A., Costanza J., Silipigni R., Guarneri S., Fusco N., Fontana L., Locatelli M., Rampini P., Campanella R., Tabano S., Miozzo M., Marfia G. The genetic landscape of human glioblastoma and matched primary cancer stem cells reveals intratumour similarity and intertumour heterogeneity. Stem. Cells Int. 2019: 2617030.
  23. Raveh S., Gavert N., Ben-Ze’ev A. L1 cell adhesion molecule (L1CAM) in invasive tumors. Cancer Lett. 2009. 282 (2): 137–145.
  24. Rong L., Li N., Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J. Exp. Clin. Cancer Res. 2022. 41 (1): 1–18.
  25. Sharma T. K., Bruno J. G., Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv. 2017. 35 (2): 275–301.
  26. Stoyanov G. S., Lyutfi E., Georgieva R., Georgiev R., Dzhenkov D. L., Petkova L., Ivanov B. D., Kaprelyan A., Ghenev P. Reclassification of glioblastoma multiforme according to the 2021 World Health Organization classification of central nervous system tumors: a single institution report and practical significance. Cureus 2022. 1. 14 (2): e21822.
  27. Tang X., Zuo C., Fang P., Liu G., Qiu Y., Huang Y., Tang R. Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy. Front. Oncol. 2021. 11: 701291.
  28. Terraneo N., Jacob F., Peitzsch C., Dubrovska A., Krudewig C., Huang Y.-L., Heinzelmann-Schwarz V., Schibli R., Béhé M., Grünberg J. L1 Cell adhesion molecule confers radioresistance cell population. Cancers (Basel). 2020. 12 (217): 1–17.
  29. Wachowiak R., Krause M., Mayer S., Peukert N., Suttkus A., Müller W. C., Lacher M., Meixensberger J., Nestler U. Increased L1CAM (CD171) levels are associated with glioblastoma and metastatic brain tumors. Med. (United States). 2018. 97 (38): e12396.
  30. Wang L., Bing T., Liu Y., Zhang N., Shen L., Liu X., Wang J., Shangguan D. Imaging of neurite network with an anti-L1CAM aptamer generated by Neurite-SELEX. J. Am. Chem. Soc. 2018. 140 (51): 18066–18073.
  31. Yunusova N. V., Patysheva M. R., Molchanov S. V., Zambalova E. A., Grigor’eva A.E., Kolomiets L. A., Ochirov M. O., Tamkovich S. N., Kondakova I. V. Metallo proteinases at the surface of small extrcellular vesicles in advanced ovarian cancer: Relationships with ascites volume and peritoneal canceromatosis index. Clin. Chim. Acta. 2019. 494: 116–122.
  32. Zhou F., Fu T., Huang Q., Kuai H., Mo L., Liu H., Wang Q., Peng Y., Han D., Zhao Z., Fang X., Tan W. Hypoxiaactivated PEGylated conditional aptamer/antibody for cancer imaging with improved specificity. J. Am. Chem. Soc. 2019. 141 (46): 18421–18427.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Expression of L1CAM in glioblastoma cell cultures and aptocytochemical staining of G01 L1CAM+ and G01 L1CAMcells with anti-L1CAM antibodies and labeled yly12-FAM aptamer. (а) – Levels of L1CAM expression in human glioblastoma cell cultures G01, Sus\fP2, Bl, Sh\fP3, Rozh. Data are represented as mean ± SD. n = 3 for each group. Statistically significant differences between the control and the treatment groups are indicated by asterisks (One-Way ANOVA, post-hoc Tukey HSD Test, ** – p < 0.01, *** – p < 0.001, **** – p < 0.0001). (б) – Aptocytochemical staining of human glioblastoma cells G01 L1CAM+ and G01 L1CAM- with yly12-FAM aptamer (green), and anti-L1CAM antibodies (red). Nuclei are stained with Hoechst 33342 (blue).

Download (155KB)
3. Fig. 2. Results of the MTS assay for single and triple addition of aptamers to L1CAM to human glioblastoma cells. MTS-assays on the 10th day after exposure to L1CAM aptamers yly4, yly10, yly11, yly12, ylQ3 to glioblastoma cells (а) – G01, (б) – Sus\ fP2 in concentrations 10 mcM and 37.5 mcM. MTS-assays on the 10th day after exposure to L1CAM aptamers yly4, yly10, yly11, yly12, ylQ3 in concentration 10 mcM to glioblastoma cells G01 L1CAM+ and G01 L1CAM- (в) once and (г) every three days. Data are represented as mean ± SD. n = 3 for each group. Statistically significant differences between the control and the treatment groups are indicated by asterisks (Two-Way ANOVA, post-hoc Bonferroni Test, ** – p < 0.01, *** – p < 0.001, **** p < 0.0001).

Download (299KB)
4. Fig. 3. Immunocytochemical staining of glioblastoma cells G01, Sus\fP2, G01 L1CAM⁺ and G01 L1CAM⁻ and PCR analysis of glioblastoma cells G01 L1CAM⁺ and G01 L1CAM⁻ after exposure to the aptamer to L1CAM yly12. (а) –Immunocytochemical staining of G01, Sus\fP2, G01 L1CAM⁺ and G01 L1CAM⁻ cells after exposure to yly12 aptamer on stem cell markers CD133, L1CAM, CD44, Nestin, Sox2 and proliferation marker ki67. Зел – green, кр – red. Nuclei are stained with Hoechst 33342 (blue). (б) – Real-time quantitative PCR associated with stemness CD133, L1CAM, CD44, Nestin, Sox2 and GFAP, in cell cultures G01 L1CAM⁺ and G01 L1CAM⁻ after exposure to yly12 aptamer. Statistically significant differences between the control and the treatment groups are indicated by asterisks (Two-Way ANOVA, post-hoc Bonferroni Test, * – p < 0.05, **** – p < 0.0001).

Download (337KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies