Problems and prospects for restoration of the optic nerve

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Restoring visual function after damage or complete destruction of the optic nerve in adult patients has many natural barriers to neuroregeneration. Research to restore vision has focused on maintaining retinal ganglion cells (RGCs), stimulating axonal growth toward the brain, and restoring their proper synaptic connections. Unfortunately, mammalian RGC axons under normal conditions do not regenerate after injury and ultimately die. In this review, we summarize the currently known mechanisms of RGC survival and axonal regeneration in mammals, including specific intrinsic signaling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, and stem cell therapy. We also review the current understanding of the phenomena impeding optic nerve regeneration and possible ways to overcome these obstacles. The most important research results obtained in recent decades may be informative for the development of methods for treating the damaged visual system.

Full Text

Restricted Access

About the authors

A. V. Revishchin

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences

Author for correspondence.
Email: revishchin@mail.ru
Russian Federation, Moscow

G. V. Pavlova

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia; I.M. Sechenov First Moscow State Medical University

Email: revishchin@mail.ru
Russian Federation, Moscow; Moscow; Moscow

A. N. Shkarubo

N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Healthcare of Russia; Russian Medical Academy of Continuous Professional Education

Email: revishchin@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Шкарубо А. Н., Николепко В. Н., Огурцова А. А., Якупова З. Ф., Сотников В. В., Седько В. А., Чернов И. В., Шкарубо М. А., Шишкина Л. В., Синельников М. Е., Величко А. Я. (2023). Способ пластики зрительного нерва (Российская Федерация), Патент № 2802384: pp. 1.
  2. Abbhi V., Piplani P. Rho-kinase (ROCK) Inhibitors – A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem. 2020. 27 (14): 2222–2256.
  3. Aguayo A. J., Rasminsky M., Bray G. M., Carbonetto S., McKerracher L., Villegas-Perez M.P., Vidal-Sanz M., Carter D. A. (1991). Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. In Philos Trans R Soc Lond B Biol Sci, 1991. 331 (1261): 337–343.
  4. Ahmed Z., Kalinski H., Berry M., Almasieh M., Ashush H., Slager N., Brafman A., Spivak I., Prasad N., Mett I., Shalom E., Alpert E., Di Polo A., Feinstein E., Logan A. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2011. 2 (6): e173.
  5. Allcutt D., Berry M., Sievers J. A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res. 1984. 318 (2): 219–230.
  6. Behbehani R. Clinical approach to optic neuropathies. Clin Ophthalmol. 2007. 1 (3): 233–246.
  7. Beirowski B., Nogradi A., Babetto E., Garcia-Alias G., Coleman M. P. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol. 2010. 69 (5): 455–472.
  8. Belin S., Nawabi H., Wang C., Tang S., Latremoliere A., Warren P., Schorle H., Uncu C., Woolf C. J., He Z., Steen J. A. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron. 2015. 86 (4): 1000–1014.
  9. Benowitz L. I., He Z., Goldberg J. L. Reaching the brain: Advances in optic nerve regeneration. Exp Neurol. 2017. 287 (Pt 3): 365–373.
  10. Benowitz L. I., Yin Y. Optic nerve regeneration. Arch Ophthalmol. 2010. 128 (8): 1059–1064.
  11. Berkelaar M., Clarke D. B., Wang Y. C., Bray G. M., Aguayo A. J. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994. 14 (7): 4368–4374.
  12. Berry M., Carlile J., Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol. 1996. 25 (2): 147–170.
  13. Blanquie O., Bradke F. Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol. 2018. 51: 60–69.
  14. Bollaerts I., Veys L., Geeraerts E., Andries L., De Groef L., Buyens T., Salinas-Navarro M., Moons L., Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct. 2018. 223 (2): 545–567.
  15. Bonfanti L., Strettoi E., Chierzi S., Cenni M. C., Liu X. H., Martinou J. C., Maffei L., Rabacchi S. A. Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J Neurosci. 1996. 16 (13): 4186–4194.
  16. Boyd J. G., Doucette R., Kawaja M. D. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. Faseb J. 2005. 19 (7): 694–703.
  17. Burton M. J., Ramke J., Marques A. P., Bourne R. R.A., Congdon N., Jones I., Ah Tong B. A.M., Arunga S., Bachani D., Bascaran C., Bastawrous A., Blanchet K., Braithwaite T., Buchan J. C., Cairns J., Cama A., Chagunda M., Chuluunkhuu C., Cooper A., Crofts-Lawrence J., Dean W. H., Denniston A. K., Ehrlich J. R., Emerson P. M., Evans J. R., Frick K. D., Friedman D. S., Furtado J. M., Gichangi M. M., Gichuhi S., Gilbert S. S., Gurung R., Habtamu E., Holland P., Jonas J. B., Keane P. A., Keay L., Khanna R. C., Khaw P. T., Kuper H., Kyari F., Lansingh V. C., Mactaggart I., Mafwiri M. M., Mathenge W., McCormick I., Morjaria P., Mowatt L., Muirhead D., Murthy G. V.S., Mwangi N., Patel D. B., Peto T., Qureshi B. M., Salomao S. R., Sarah V., Shilio B. R., Solomon A. W., Swenor B. K., Taylor H. R., Wang N., Webson A., West S. K., Wong T. Y., Wormald R., Yasmin S., Yusufu M., Silva J. C., Resnikoff S., Ravilla T., Gilbert C. E., Foster A., Faal H. B. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Lancet Glob Health. 2021. 9 (4): e489-e551.
  18. Cen L. P., Liang J. J., Chen J. H., Harvey A. R., Ng T. K., Zhang M., Pang C. P., Cui Q., Fan Y. M. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration. Neuroscience. 2017. 343: 472–482.
  19. Chao J. R., Lamba D. A., Klesert T. R., Torre A., Hoshino A., Taylor R. J., Jayabalu A., Engel A. L., Khuu T. H., Wang R. K., Neitz M., Neitz J., Reh T. A. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl Vis Sci Technol. 2017. 6 (3): 4.
  20. Chen D. F., Jhaveri S., Schneider G. E. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc Natl Acad Sci U S A. 1995. 92 (16): 7287–7291.
  21. Chen M., Xiang Z., Cai J. The anti-apoptotic and neuroprotective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res. 2013. 1532: 63–75.
  22. Cheng Y., Yin Y., Zhang A., Bernstein A. M., Kawaguchi R., Gao K., Potter K., Gilbert H. Y., Ao Y., Ou J., FricanoKugler C.J., Goldberg J. L., He Z., Woolf C. J., Sofroniew M. V., Benowitz L. I., Geschwind D. H. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun. 2022. 13 (1): 4418.
  23. Cho J. H., Mao C. A., Klein W. H. Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves. Mol Vis. 2012. 18: 2658–2672.
  24. Coco-Martin R.M., Pastor-Idoate S., Pastor J. C. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharma ceutics. 2021. 13 (6): 865.
  25. Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol. 2006. 33 (2): 155–179.
  26. Dezawa M., Kawana K., Negishi H., Adachi-Usami E. Glial cells in degenerating and regenerating optic nerve of the adult rat. Brain Res Bull. 1999. 48 (6): 573–579.
  27. Dickendesher T. L., Baldwin K. T., Mironova Y. A., Koriyama Y., Raiker S. J., Askew K. L., Wood A., Geoffroy C. G., Zheng B., Liepmann C. D., Katagiri Y., Benowitz L. I., Geller H. M., Giger R. J. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci. 2012. 15 (5): 703–712.
  28. Donahue R. J., Maes M. E., Grosser J. A., and Nickells R. W. BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage. Mol Neurobiol. 2020. 57 (2): 1070–1084.
  29. Ellenberg D., Shi J., Jain S., Chang J. H., Ripps H., Brady S., Melhem E. R., Lakkis F., Adamis A., Chen D. F., EllisBehnke R., Langer R. S., Strittmatter S. M., Azar D. T. Impediments to eye transplantation: ocular viability following optic-nerve transection or enucleation. Br J Ophthalmol. 2009. 93 (9): 1134–1140.
  30. Filbin M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003. 4(9): 703–713.
  31. Fischer D., Petkova V., Thanos S., Benowitz L. I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci. 2004. 24 (40): 8726–8740.
  32. Flachsbarth K., Jankowiak W., Kruszewski K., Helbing S., Bartsch S., Bartsch U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res. 2018. 176: 258–265.
  33. George E. B., Glass J. D., Griffin J. W. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995. 15 (10): 6445–6452.
  34. Ghaffarieh A., Levin L. A. Optic nerve disease and axon pathophysiology. Int Rev Neurobiol. 2012. 105: 1–17.
  35. Gokoffski K. K., Peng M., Alas B., Lam P. Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. Curr Opin Neurol. 2020. 33 (1): 93–105.
  36. Goldberg J. L., Vargas M. E., Wang J. T., Mandemakers W., Oster S. F., Sretavan D. W., Barres B. A. An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci. 2004. 24 (21): 4989–4999.
  37. Goll D. E., Thompson V. F., Li H., Wei W., Cong J. The calpain system. Physiol Rev. 2003. 83 (3): 731–801.
  38. Gong S., Jin H., Zhang D., Zou W., Wang C., Li Z., Chen R., Dong Y., Hou L. The Therapeutic Effects after Transplantation of Whole-Layer Olfactory Mucosa in Rats with Optic Nerve Injury. Biomed Res Int. 2018. 2018: 6069756.
  39. Grafstein B., Ingoglia N. A. Intracranial transection of the optic nerve in adult mice: preliminary observations. Exp Neurol. 1982. 76 (2): 318–330.
  40. Harrington A. W., Ginty D. D. Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci. 2013. 14 (3): 177–187.
  41. Keirstead S. A., Rasminsky M., Fukuda Y., Carter D. A., Aguayo A. J., Vidal-Sanz M. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science. 1989. 246 (4927): 255–257.
  42. Keirstead S. A., Vidal-Sanz M., Rasminsky M., Aguayo A. J., Levesque M., So K. F. Responses to light of retinal neurons regenerating axons into peripheral nerve grafts in the rat. Brain Res. 1985. 359 (1–2): 402–406.
  43. Kerschensteiner M., Schwab M. E., Lichtman J. W., Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005. 11 (5): 572–577.
  44. Koprivica V., Cho K. S., Park J. B., Yiu G., Atwal J., Gore B., Kim J. A., Lin E., Tessier-Lavigne M., Chen D. F., He Z. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science. 2005. 310 (5745): 106–110.
  45. Krebs D. L., Hilton D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001. 19 (5): 378–387.
  46. Kreutzberg G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996. 19 (8): 312–318.
  47. Kurimoto T., Yin Y., Omura K., Gilbert H. Y., Kim D., Cen L. P., Moko L., Kugler S., Benowitz L. I. Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci. 2010. 30 (46): 15654–15663.
  48. Leaver S. G., Harvey A. R., Plant G. W. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia. 2006. 53 (5): 467–476.
  49. Leon S., Yin Y., Nguyen J., Irwin N., Benowitz L. I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci. 2000. 20 (12): 4615–4626.
  50. Li H. J., Pan Y. B., Sun Z. L., Sun Y. Y., Yang X. T., Feng D. F. Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology. 2018. 137: 33–49.
  51. Li S., Yang C., Zhang L., Gao X., Wang X., Liu W., Wang Y., Jiang S., Wong Y. H., Zhang Y., Liu K. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling. Proc Natl Acad Sci U S A. 2016. 113 (7): 1937–1942.
  52. Li Y., Schlamp C. L., Nickells R. W. Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999. 40 (5): 1004–1008.
  53. Lim J. H., Stafford B. K., Nguyen P. L., Lien B. V., Wang C., Zukor K., He Z., Huberman A. D. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat Neurosci. 2016. 19 (8): 1073– 1084.
  54. Lindqvist N., Peinado-Ramonn P., Vidal-Sanz M., Hallbook F. GDNF, Ret, GFRalpha1 and 2 in the adult rat retino-tectal system after optic nerve transection. Exp Neurol. 2004. 187 (2): 487–499.
  55. Lipson A. C., Widenfalk J., Lindqvist E., Ebendal T., Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neurol. 2003. 180 (2): 167–171.
  56. Liu B., Chen H., Johns T. G., Neufeld A. H. Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J Neurosci. 2006. 26 (28): 7532– 7540.
  57. Liu H., Anders F., Thanos S., Mann C., Liu A., Grus F. H., Pfeiffer N., and Prokosch-Willing V. Hydrogen Sulfide Protects Retinal Ganglion Cells Against Glaucomatous Injury In Vitro and In Vivo. Invest Ophthalmol Vis Sci. 2017. 58 (12): 5129–5141.
  58. Liu Y., Gong Z., Liu L., Sun H. Combined effect of olfactory ensheathing cell (OEC) transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats. Mol Vis. 2010. 16 (2903–2910.
  59. Livne-Bar I., Wei J., Liu H. H., Alqawlaq S., Won G. J., Tuccitto A., Gronert K., Flanagan J. G., Sivak J. M. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. J Clin Invest. 2017. 127 (12): 4403–4414.
  60. Lu J., Feron F., Ho S. M., Mackay-Sim A., Waite P. M. Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res. 2001. 889 (1–2): 344–357.
  61. Mackay-Sim A., St John J. A. Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol. 2011. 229 (1): 174–180.
  62. Maes M. E., Schlamp C. L., Nickells R. W. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 2017. 57: 1–25.
  63. Mansour-Robaey S., Clarke D. B., Wang Y. C., Bray G. M., Aguayo A. J. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A. 1994. 91 (5): 1632–1636.
  64. Mendoza M. C., Er E. E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011. 36 (6): 320–328.
  65. Mesentier-Louro L.A., Rosso P., Carito V., Mendez-Otero R., Santiago M. F., Rama P., Lambiase A., Tirassa P. Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury. Mol Neurobiol. 2019. 56 (2): 1056–1069.
  66. Mesentier-Louro L.A., Zaverucha-do-Valle C., da Silva-Junior A.J., Nascimento-Dos-Santos G., Gubert F., de Figueiredo A. B., Torres A. L., Paredes B. D., Teixeira C., Tovar-Moll F., Mendez-Otero R., Santiago M. F. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One. 2014. 9 (10): e110722.
  67. Moore D. L., Goldberg J. L. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol. 2011. 71 (12): 1186–1211.
  68. Muller A., Hauk T. G., Fischer D. Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain. 2007. 130 (Pt 12): 3308–3320.
  69. Nakano Y., Shimazawa M., Ojino K., Izawa H., Takeuchi H., Inoue Y., Tsuruma K., Hara H. Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage in duced by optic nerve crush in mice. J Pharmacol Sci. 2017. 133 (3): 176–183.
  70. Omodaka K., Kurimoto T., Nakamura O., Sato K., Yasuda M., Tanaka Y., Himori N., Yokoyama Y., Nakazawa T. Artemin augments survival and axon regeneration in axotomized retinal ganglion cells. J Neurosci Res. 2014. 92 (12): 1637–1646.
  71. Osborne A., Khatib T. Z., Songra L., Barber A. C., Hall K., Kong G. Y.X., Widdowson P. S., Martin K. R. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018. 9 (10): 1007.
  72. Pan F., Hu D., Sun L. J., Bai Q., Wang Y. S., Hou X. Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush. Neural Regen Res. 2023. 18 (7): 1607–1612.
  73. Park K. K., Liu K., Hu Y., Smith P. D., Wang C., Cai B., Xu B., Connolly L., Kramvis I., Sahin M., He Z. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008. 322 (5903): 963–966.
  74. Pearson C. S., Mencio C. P., Barber A. C., Martin K. R., Geller H. M. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. Elife. 2018. 7: 37139
  75. Petrova V., Pearson C. S., Ching J., Tribble J. R., Solano A. G., Yang Y., Love F. M., Watt R. J., Osborne A., Reid E., Williams P. A., Martin K. R., Geller H. M., Eva R., Fawcett J. W. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat Commun. 2020. 11 (1): 5614.
  76. Plant G. W., Harvey A. R., Leaver S. G., Lee S. V. Olfactory ensheathing glia: repairing injury to the mammalian visual system. Exp Neurol. 2011. 229(1): 99–108.
  77. Prasad S., Volpe N. J., Balcer L. J. Approach to optic neuropathies: clinical update. Neurologist. 2010. 16 (1): 23–34.
  78. Richardson P. M., Issa V. M., Shemie S. Regeneration and retrograde degeneration of axons in the rat optic nerve. J Neurocytol. 1982. 11 (6): 949–966.
  79. Schwab M. E. Nogo and axon regeneration. Curr Opin Neurobiol. 2004. 14 (1): 118–124.
  80. Schwab M. E., Thoenen H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci. 1985. 5 (9): 2415–2423.
  81. Shin J. E., Cho Y., Beirowski B., Milbrandt J., Cavalli V., DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron. 2012. 74 (6): 1015–1022.
  82. Shkarubo A. N., Nikolenko V. N., Velichko A. Y., Sinelnikov M. Y. Cell therapy assisted autotransplantation of olfactory tract into the optic nerve: A potential treatment for optic neuropathy. Med Hypotheses. 2020. 143 (110104).
  83. Silver J., Schwab M. E., Popovich P. G. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol. 2015. 7 (3): a020602.
  84. Smith P. D., Sun F., Park K. K., Cai B., Wang C., Kuwako K., Martinez-Carrasco I., Connolly L., He Z. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron. 2009. 64 (5): 617–623.
  85. So K. F., Aguayo A. J. Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res. 1985. 328 (2): 349– 354.
  86. Takeuchi H., Inagaki S., Morozumi W., Nakano Y., Inoue Y., Kuse Y., Mizoguchi T., Nakamura S., Funato M., Kaneko H., Hara H., Shimazawa M. VGF nerve growth factor in ducible is involved in retinal ganglion cells death induced by optic nerve crush. In Sci Rep, 2018. pp. 16443.
  87. Tan H., Zhong Y., Shen X., Cheng Y., Jiao Q., Deng L. Erythropoietin promotes axonal regeneration after optic nerve crush in vivo by inhibition of RhoA/ROCK signaling pathway. Neuropharmacology. 2012. 63 (6): 1182–1190.
  88. Tham Y. C., Li X., Wong T. Y., Quigley H. A., Aung T., Cheng C. Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014. 121(11): 2081–2090.
  89. Thompson A., Berry M., Logan A., Ahmed Z. Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration. Invest Ophthalmol Vis Sci. 2019. 60 (5): 1748–1759.
  90. Tropepe V., Coles B. L., Chiasson B. J., Horsford D. J., Elia A. J., McInnes R.R., van der Kooy D. Retinal stem cells in the adult mammalian eye. Science. 2000. 287 (5460): 2032–2036.
  91. Vidal-Sanz M., Bray G. M., Villegas-Perez M.P., Thanos S., and Aguayo A. J. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci. 1987. 7 (9): 2894–2909.
  92. Villegas-Perez M.P., Vidal-Sanz M., Rasminsky M., Bray G. M., Aguayo A. J. Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol. 1993. 24 (1): 23–36.
  93. Weibel D., Kreutzberg G. W., Schwab M. E. Brain-derived neurotrophic factor (BDNF) prevents lesion-induced axonal die-back in young rat optic nerve. Brain Res. 1995. 679 (2): 249–254.
  94. Whiteley S. J., Sauve Y., Aviles-Trigueros M., Vidal-Sanz M., Lund R. D. Extent and duration of recovered pupillary light reflex following retinal ganglion cell axon regeneration through peripheral nerve grafts directed to the pretectum in adult rats. Exp Neurol. 1998. 154 (2): 560–572.
  95. Woodhall E., West A. K., Chuah M. I. Cultured olfactory ensheathing cells express nerve growth factor, brainderived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001. 88 (1–2): 203–213.
  96. Xu Z., Fouda A. Y., Lemtalsi T., Shosha E., Rojas M., Liu F., Patel C., Caldwell R. W., Narayanan S. P., Caldwell R. B. Retinal Neuroprotection From Optic Nerve Trauma by Deletion of Arginase 2. Front Neurosci. 2018. 12: 970.
  97. Yan Q., Wang J., Matheson C. R., Urich J. L. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF). J Neurobiol. 1999. 38 (3): 382–390.
  98. Yang H., He B. R., Hao D. J. Biological roles of olfactory ensheathing cells in facilitating neural regeneration: a systematic review. Mol Neurobiol. 2015. 51 (1): 168–179.
  99. Yang X. F., Huang Y. X., Lan M., Zhang T. R., Zhou J. Protective Effects of Leukemia Inhibitory Factor on Retinal Vasculature and Cells in Streptozotocin-induced Diabetic Mice. Chin Med J (Engl). 2018. 131 (1): 75–81.
  100. Yang X. T., Bi Y. Y., Chen E. T., Feng D. F. Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina. J Neurosci Res. 2014. 92 (2): 148–161.
  101. Yin Y., Cui Q., Gilbert H. Y., Yang Y., Yang Z., Berlinicke C., Li Z., Zaverucha-do-Valle C., He H., Petkova V., Zack D. J., Benowitz L. I. Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A. 2009. 106 (46): 19587–19592.
  102. Yin Y., Cui Q., Li Y., Irwin N., Fischer D., Harvey A. R., Benowitz L. I. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 2003. 23 (6): 2284–2293.
  103. Yin Y., Henzl M. T., Lorber B., Nakazawa T., Thomas T. T., Jiang F., Langer R., Benowitz L. I. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006. 9 (6): 843–852.
  104. Yiu G., and He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006. 7(8): 617–627.
  105. Zaverucha-do-Valle C., Mesentier-Louro L., Gubert F., Mortari N., Padilha A. B., Paredes B. D., Mencalha A., Abdelhay E., Teixeira C., Ferreira F. G., Tovar-Moll F., de Souza S. A., Gutfilen B., Mendez-Otero R., Santiago M. F. Sustained effect of bone marrow mononuclear cell therapy in axonal regeneration in a model of optic nerve crush. Brain Res. 2014. 1587: 54–68.
  106. Zhang J., Liu W., Zhang X., Lin S., Yan J., Ye J. Sema3A inhibits axonal regeneration of retinal ganglion cells via ROCK2. Brain Res. 2020. 1727: 146555.
  107. Zhang Z. Z., Gong Y. Y., Shi Y. H., Zhang W., Qin X. H., Wu X. W. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience. 2023. 224: 282–293.
  108. Zheng B., Atwal J., Ho C., Case L., He X. L., Garcia K. C., Steward O., Tessier-Lavigne M. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A. 2005. 102 (4): 1205–1210.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies