RECOGNITION OF ORAL SPEECH ACCORDING TO MEG DATA BY COVARIANCE FILTERS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Speech recognition based on EEG and MEG data is the first step in the development of BCI and AI systems for their further use in inner speech decoding. Great advances in this direction have been made using ECoG and stereo-EEG. At the same time, there are few works on this topic on the analysis of data obtained by non-invasive methods of recording brain activity. Our approach is based on the evaluation of connections in the space of sensors with the identification of a pattern of MEG connectivity specific for a given segment of speech. We tested our method on 7 subjects. In all cases, our processing pipeline was quite reliable and worked either without recognition errors or with a small number of errors. After “training”, the algorithm is able to recognise a fragment of oral speech with a single presentation. For recognition, we used segments of the MEG recording 50–1200 ms from the beginning of the sound of the word. For high-quality recognition, a segment of at least 600 ms was required. Intervals longer than 1200 ms worsened the recognition quality. Bandpass filtering of the MEG showed that the quality of recognition is equally effective in the entire frequency range. Some decrease in the level of recognition is observed only in the range of 9–14 Hz.

About the authors

V. M. Verkhlyutov

Higher Nervous Activity of a Person Lab., Institute of Higher Nervous Activity and Neurophysiology of RAS

Author for correspondence.
Email: verkhliutov@ihna.ru
Russia, Moscow

E. O. Burlakov

Derzhavin Tambov State University

Email: verkhliutov@ihna.ru
Russia, Tambov

K. G. Gurtovoy

RNC Kurchatov Institute

Email: verkhliutov@ihna.ru
Russia, Moscow

V. L. Vvedensky

RNC Kurchatov Institute

Email: verkhliutov@ihna.ru
Russia, Moscow

References

  1. Anumanchipalli G.K., Chartier J., Chang E.F. Speech synthesis from neural decoding of spoken sentences. Nature. 2019. 568 (7753): 493–498. https://doi.org/10.1038/s41586-019-1119-1
  2. Anurova I., Vetchinnikova S., Dobrego A., Williams N., Mikusova N., Suni A., Palva S. Event-related responses reflect chunk boundaries in natural speech. NeuroImage, 2022. 255 (April), 119203. https://doi.org/10.1016/j.neuroimage.2022.119203
  3. Arnulfo G., Wang S.H., Myrov V., Toselli B., Hirvonen J., Fato M.M., Palva J.M. Long-range phase synchronization of high-frequency oscillations in human cortex. Nature Communications, 2020. 11 (1): 5363. https://doi.org/10.1038/s41467-020-18975-8
  4. Che B., Ciria L.F., Hu C., Ivanov P.C. Ensemble of coupling forms and networks among brain rhythms as function of states and cognition. Communications Biology, 2022. 5 (1): 82. https://doi.org/10.1038/s42003-022-03017-4
  5. Dash D., Ferrari P., Wang J. Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals. Frontiers in Neuroscience. 2020. 14: 290. https://doi.org/10.3389/fnins.2020.00290
  6. Défossez A., Caucheteux C., Rapin J., Kabeli O., King J.-R. Decoding speech from non-invasive brain recordings. ArXiv. 2022. 2208. 12266: 1–15. http://arxiv.org/abs/2208.12266
  7. Huth A.G., De Heer W.A., Griffiths T.L., Theunissen F.E., Gallant J.L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature. 2016. 532 (7600): 453–458. https://doi.org/10.1038/nature17637
  8. Liaukovich K., Ukraintseva Y., Martynova O. Implicit auditory perception of local and global irregularities in passive listening condition. Neuropsychologia, 2022. 165 (July 2020): 108129. https://doi.org/10.1016/j.neuropsychologia.2021.1-08129
  9. Lizarazu M., Carreiras M., Molinaro N. Theta-gamma phase-amplitude coupling in auditory cortex is modulated by language proficiency. Human Brain Mapping, 2023. 44 (7): 2862–2872. https://doi.org/10.1002/hbm.26250
  10. Neymotin S.A., Tal I., Barczak A., O’Connell M.N., McGinnis T., Markowitz N., Lakatos P. Detecting Spontaneous Neural Oscillation Events in Primate Auditory Cortex. Eneuro. 2022. 9 (4), ENEURO.0281-21.2022. https://doi.org/10.1523/ENEURO.0281-21.2022
  11. Norman-Haignere S.V., Long L.K., Devinsky O., Doyle W., Irobunda I., Merricks E.M., Mesgarani N. Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nature Human Behaviour. 2022. 6 (3): 455–469. https://doi.org/10.1038/s41562-021-01261-y
  12. Proix T., Delgado Saa J., Christen A., Martin S., Pasley B.N., Knight R.T., Giraud A.-L. Imagined speech can be decoded from low- and cross-frequency intracranial EEG features. Nature Communications, 2022. 13 (1), 48. https://doi.org/10.1038/s41467-021-27725-3
  13. Rolls E.T., Deco G., Huang C.-C., Feng J. The human language effective connectome. NeuroImage, 2022. 258: 119352.
  14. Sato N. Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network. Scientific Reports, 2022. 12 (1): 334. https://doi.org/10.1038/s41598-021-04169-9
  15. Tang J., LeBel A., Jain S., Huth A.G. Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience. 2023. https://doi.org/10.1038/s41593-023-01304-9
  16. Verkhlyutov V. MEG data during the presentation of Gabor patterns and word sets. Zenodo, 2022. https://zenodo.org/record/7458233
  17. Vvedensky V., Filatov I., Gurtovoy K., Sokolov M. Alpha Rhythm Dynamics During Spoken Word Recognition. Studies in Computational Intelligence, 2023. 1064: 65–70.https://doi.org/10.1007/978-3-031-19032-2_7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (486KB)
4.

Download (50KB)
5.

Download (50KB)
6.

Download (49KB)
7.

Download (46KB)

Copyright (c) 2023 В.М. Верхлютов, Е.О. Бурлаков, К.Г. Гуртовой, В.Л. Введенский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».