AUDITORY AFTER-EFFECT: STATIONARY ADAPTER CHANGES THE PERCEIVED TRAJECTORIES OF MOVING SOUNDS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Perceived trajectories of dichotically presented sound stimuli with different spatial patterns were investigated in silence and after listening to stationary adapters. The spatial position of all stimuli was determined by the interaural level differences. The subjects indicated the perceived position of the beginning and end of the stimulus trajectory. Lateralized stationary adapters had no effect on the perceived position of the neighboring (ipsilateral) stimuli, but “pushed away” the stimuli located on the opposite side of the acoustic space. After exposure to the central adapter, the lateral points of the perceived trajectories were pushed away from the adapter, regardless of the motion direction. The motion starting points located near the central adapter shifted in the direction of the stimulus motion, but the perceived position of the central endpoints was not affected by the central adapter. The effect of stationary adapters on the perceived trajectories of moving sounds can be best explained by a three-channel model of the neural coding of auditory space.

About the authors

L. B. Shestopalova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: shestolido@mail.ru
Russia, St. Petersburg

D. A. Salikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shestolido@mail.ru
Russia, St. Petersburg

E. A. Petropavlovskaia

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shestolido@mail.ru
Russia, St. Petersburg

References

  1. Андреева И.Г. Последействие движения как универсальное явление для сенсорных систем, участвующих в ориентации в пространстве. I. Зрительное последействие. Журн. эвол. биохим. и физиол. 2014. 50: 413–419.
  2. Андреева И.Г. Последействие движения как универсальное явление для сенсорных систем, участвующих в ориентации в пространстве. II. Слуховое последействие. Журн. эвол. биохим. и физиол. 2015. 51: 145–153.
  3. Андреева И.Г. Последействие движения как универсальное явление для сенсорных систем, участвующих в ориентации в пространстве. III. Последействие, возникающее при адаптации к движению в соматосенсорной и вестибулярной системах. Журн. эвол. биохим. и физиол. 2016. 52: 307–315.
  4. Андреева И.Г. Сенсорное последействие движения. Сенсорные системы. 2017. 31: 279–290.
  5. Варягина О.В., Радионова Е.А. Индивидуальные особенности испытуемых при латерализации неподвижного и движущегося звуковых образов (виртуальная реальность: частные проявления). Журн. эвол. биохим. и физиол. 2004. 40 (5): 441–449.
  6. Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Предсказательная способность слуховой системы при плавном движении и скачкообразном перемещении звуковых образов малой длительности. Журн. высшей нервной деятельности им. И.П. Павлова, 2011. 61 (3): 293–305.
  7. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Семенова В.В., Никитин Н.И. Слуховые вызванные потенциалы человека в условиях пространственной маскировки. Физиология человека. 2022 (в печати).
  8. Barlow H.B. A theory about the functional role and synaptic mechanisms of visual after-effects, in Vision: Coding and Efficiency. Ed. Blakemore C. Cambridge University Press. 1990. 363–375 p.
  9. Barlow H.B., Hill R.M. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature. 1963. 28: 1345–1347.
  10. Boehnke S.E., Phillips D.P. Azimuthal tuning of human perceptual channels for sound location. J. Acoust. Soc. Am. 1999. 106: 1948–1955.
  11. Carlile S., Hyams S., Delaney S. Systematic distortions of auditory space perception following prolonged exposure to broadband noise. J. Acoust. Soc. Am. 2001. 110: 416–424.
  12. Clifford C.W., Wenderoth P., Spehar B. A functional angle on some after-effects in cortical vision. Proc. Biol. Sci. 2000. 267: 1705–1710.
  13. Dingle R.N., Hall S.E., Phillips D.P. A midline azimuthal channel in human spatial hearing. Hear. Res. 2010. 268: 67–74.
  14. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: interaural level differences, J. Acoust. Soc. Am. 2012. 131 (5): 4023–4029. https://doi.org/10.1121/1.3701877
  15. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: Interaural time differences. J. Acoust. Soc. Am. 2013. 133 (1): 417–424. https://doi.org/10.1121/1.4768799
  16. Gutschalk A., Micheyl C., Oxenham A.J. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. J. Acoust. Soc. Am. 2008. 123 (2). https://doi.org/10.1121/1.2828057
  17. Grantham D.W., Wightman F.L. Auditory motion after-effects. Perception & Psychophysics. 1979. 26 (5): 403–408.
  18. Grantham D.W. Motion after-effects with horizontally moving sources in the free field. Perception & Psychophysics. 1989. 45 (2): 129–136.
  19. Grantham D.W. Adaptation to auditory motion in the horizontal plane: Effect of prior exposure to motion on motion detectability. Perception & Psychophysics 1992. 52 (2): 144–150.
  20. He S., MacLeod D.I. Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature. 411: 473–476.
  21. Jenkins W.M., Masterton R.B. Sound localization: effects of unilateral lesions in central auditory pathways. J. Neurophysiol. 1982. 47: 987–1016.
  22. Jenkins W.M., Merzenich M.M. Role of cat primary auditory cortex for sound localization behavior. J. Neurophysiol. 1984. 52: 819–847.
  23. Joris X., Smith P.H., Yin T.C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 1998. 21: 1235–1238.
  24. Knudsen E.I., Konishi M. Space and frequency are represented separately in the auditory midbrain of the owl. J. Neurophysiol. 1978. 41: 870–884.
  25. Lee A.K., Deane-Pratt A., Shinn-Cunningham B.G. Localization interference between components in an auditory scene. J. Acoust. Soc. Am. 2009. 126: 2543–2555. https://doi.org/10.1121/1.3238240
  26. McAlpine D., Jiang D., Palmer A.R. A neural code for low-frequency sound localization in mammals. Nat. Neurosc. 2001. 4: 396–401.
  27. Maffei L., Fiorentini A., Bisti S. Neural correlates of perceptual adaptation to gratings. Science. 1973. 182: 1036–1038.
  28. Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol. 104: 1997–2007.
  29. Malmierca M.S., Auksztulewicz R. Stimulus-specific adaptation, MMN and predictive coding. Hearing Research. 2021. 399. https://doi.org/10.1016/j.heares.2020.108076
  30. Movshon J.A., Lennie P. Pattern-selective adaptation in visual cortical neurons. 1979. Nature. 278: 850–852.
  31. Pérez-González D., Malmierca M.S. Adaptation in the auditory system: an overview. Frontiers in Integrative Neuroscience. 2014. 8: 19. https://doi.org/10.3389/fnint.2014.00019
  32. Phillips D.P., Brugge J.F. Progress in neurophysiology of sound localization. Annu. Rev. Psychol. 1985. 36: 245–274.
  33. Phillips D.P., Hall S.E. Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research. 2005. 202: 188–199. https://doi.org/10.1016/j.heares.2004.11.001
  34. Phillips D.P., Irvine D.R.F. Responses of neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear. Res. 1981. 4: 99–307.
  35. Phillips D.P., Vigneault-McLean B.K., Boehnke S.E., Hall S.E. Acoustic hemifields in the spatial release from masking of speech by noise. J. Am. Acad. Audiol. 2003. 14: 518–524.
  36. Salminen N.H., May P.J., Alku P., Tiitinen H. A population rate code of auditory space in the human cortex. PLoS One. 2009. 4:e7600.
  37. Salminen N.H., Tiitinen H., May P.J. Auditory Spatial Processing in the Human Cortex. The Neuroscientist. 2012. 18 (6): 602–612. https://doi.org/10.1177/1073858411434209
  38. Stecker G.C., Middlebrooks J.C. Distributed coding of sound locations in the auditory cortex. Biol. Cybern. 2003. 89: 341–349.
  39. Vigneault-McLean B.K, Hall S.E., Phillips D.P. The effects of lateralized adaptors on lateral position judgments of tones within and across frequency channels. Hear. Res. 2007. 24: 93–100.
  40. Ulanovsky N., Las L., Nelken I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 2003. 6: 391–398.https://doi.org/10.1038/nn1032
  41. Wade N.J. A selective history of the study of visual motion after-effects. Perception. 1994. 23: 1111–1134.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (231KB)
3.

Download (411KB)
4.

Download (40KB)
5.

Download (66KB)

Copyright (c) 2023 Л.Б. Шестопалова, Д.А. Саликова, Е.А. Петропавловская

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».