О сложности реализации логических процедур классификации по прецедентам

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются вопросы сложности корректного обучения процедур классификации по прецедентам, базирующихся на применении методов логического анализа данных. Изучаются метрические (количественные) свойства информативных фрагментов признаковых описаний прецедентов в случае, когда число признаков существенно больше числа прецедентов. Приведена асимптотика типичного числа часто встречающихся в описаниях прецедентов фрагментов, различающих объекты из разных классов и называемых правильными представительными элементарными классификаторами. Указана типичная длина искомого фрагмента. Технические основы приводимых оценок опираются на методику получения аналогичных оценок для труднорешаемой дискретной задачи перечисления тупиковых покрытий целочисленной матрицы, формулируемой в работе как задача поиска минимальных нечастых элементарных классификаторов. Новые результаты по изучению сложности реализации логических классификаторов позволяют теоретически обосновать эффективность процедуры обучения на основе поиска правильных представительных элементарных классификаторов и подтвердить перспективность подхода в плане временных затрат. Библ. 17.

Об авторах

Е. В Дюкова

ФИЦ ИУ РАН

Email: edjukova@mail.ru
Москва, Россия

Список литературы

  1. Дюкова Е.В., Масляков Г.О., Дюкова А.П. Логические методы корректной классификации данных // Информатика и ее приложения. 2023. Т. 17. Вып. 3. С. 64–70.
  2. Дюкова Е.В., Журавлев Ю.И. Дискретный анализ признаковых описаний в задачах распознавания большой размерности // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. №8. С. 1264–1278.
  3. Anisimova D., Djukova E., Djukova A. Supervised Classification Problem: Searching for Maximum Patterns // In Proc. of the 2024 X Internat. Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, 2024. P. 1–4.
  4. Ковшов Н.В., Моисеев В.Л., Рязанов В.В. Алгоритмы поиска логических закономерностей в задачах распознавания //Ж. вычисл. матем. и матем. физ. 2008. Т. 48. №2. C. 329–344.
  5. Кузнецов С.О. Быстрый алгоритм построения всех пересечений объектов из конечной полурешетки // Научно-техническая информация. Сер. 2. Информационные процессы и системы. 1993. №1. С. 17–20.
  6. Финн В.К. О возможности формализации правдоподобных рассуждений средствами многозначных логик // Всесоюзн. симп. по логике и методологии науки. Киев: Наукова думка, 1976. С. 82–83.
  7. Gnatyshak D.V., Ignatov D.V., Kuznetsov S.O., Mirkin B.G. Triadic Formal Concept Analysis and triclustering: searching for optimal patterns // Mach Learn. 2015. V. 101. P. 271–302.
  8. Драгунов Н.А., Дюкова Е.В., Дюкова А.П. Логическая классификация на основе поиска правильных представительных элементарных классификаторов // Изв. РАН. Теория и системы управления. 2024. №4. С. 86–92. https://doi.org/10.31857/S0002338824040027
  9. Дюкова А.П., Дюкова Е.В. О числе решений некоторых специальных задач логического анализа целочисленных данных // Изв. РАН. Теория и системы управления. 2023. №5. С. 57–66. https://doi.org/10.31857/S0002338823050050
  10. Дюкова Е.В. Асимптотические оценки некоторых характеристик множества представительных наборов и задача об устойчивости // Ж. вычисл. матем. и матем. физ. 1995. Т. 35. №1. C. 123–134.
  11. Носков В.Н., Слепян В.А. О числе тупиковых тестов для одного класса таблиц // Кибернетика. 1972. №1. С. 60–65.
  12. Johnson D., Yannakakis M., Papadimitriou C. On generating all maximal independent sets // Inform. Process. Lett. 1988. V. 27. №3. P. 119–123.
  13. Fredman M.L., Khachiyan L. On the complexity of dualization of monotone disjunctive normal forms // J. Algorithms. 1996. V. 21. P. 618–628.
  14. Murakami K., Uno T. Efficient algorithms for dualizing large-scale hypergraphs // Discrete Appl. Math. 2014. V. 170. P. 83–94.
  15. Boros E., Gurvich V., Elbassioni K., Khachiyan L. An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension // Parallel Proc. Lett. 2000. V. 10. №4. Р. 253–266.
  16. Дюкова Е.В. Об асимптотически оптимальном алгоритме построения тупиковых тестов // Докл. АН СССР. 1977. Т. 233. №4. С. 527–530.
  17. Дюкова Е.В., Прокофьев П.А. Об асимптотически оптимальных алгоритмах дуализации // Ж. вычисл. матем. и матем. физ. 2015. Т. 55. №5. С. 895–910. https://doi.org/10.7868/S0044466915050105

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».