A POSTERIORI ERROR ESTIMATES FOR APPROXIMATE SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS IN TERMS OF LOCAL NORMS AND OBJECTIVE FUNCTIONALS
- 作者: Muzalevsky A.V.1, Repin S.I.2, Frolov M.E.1
-
隶属关系:
- Peter the Great St. Petersburg Polytechnic University
- St. Petersburg Department of the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences
- 期: 卷 64, 编号 12 (2024)
- 页面: 2270–2285
- 栏目: General numerical methods
- URL: https://journals.rcsi.science/0044-4669/article/view/279978
- DOI: https://doi.org/10.31857/S0044466924120042
- EDN: https://elibrary.ru/KCLPCF
- ID: 279978
如何引用文章
全文:
详细
作者简介
A. Muzalevsky
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
S. Repin
St. Petersburg Department of the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences
Email: repin@pdmi.ras.ru
St. Petersburg, Russia; St. Petersburg, Russia; Peter the Great St. Petersburg Polytechnic University
M. Frolov
Peter the Great St. Petersburg Polytechnic UniversitySt. Petersburg, Russia
参考
- Bangerth W., Rannacher R. Adaptive finite element methods for differential equations. Berlin: Birkhauser, 2003.
- Johnson C., Hansbo P. Adaptive finite elements in computational mechanics // Comput. Methods Appl. Mech. Engrg. 1992. V. 101. P. 143–181.
- Johnson C., Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error estimates // Commun. Pure and Appl. Math. 1995. V. XLVIII. P. 199–234.
- Mommer M.S., Stevenson R. A goal-oriented adaptive finite element method with convergence rates // SIAM J. Numer. Anal. 2009. V. 47. № 2. P. 861—886.
- Stein E., Ruter M., Ohnimus S. Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity // Comput. Meth. Appl. Mech. Engrg. 2007. V. 196. № 37—40. P. 3598—3613.
- Repin S. I. A posteriori error estimation for variational problems with uniformly convex functionals // Math. Comput. 2000. V. 69. № 230. P. 481–500.
- Repin S. A posteriori estimates for partial differential equations. Berlin: Walter de Gruyter GmbH & Co. KG, 2008.
- Репин С.И. Тождество для отклонений от точного решения задачи A u + ` = 0 и его следствия // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. С. 22–45.
- Repin S., Sauter S. Accuracy of Mathematical Models. Dimension Reduction, Simplification, and Homogenization. EMS Tracts in Mathematics. Vol. 33. 2020.
- Репин С.И. Оценки отклонения от точных решений краевых задач в мерах более сильных, чем энергетическая норма // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 5. С. 767–783
- Repin S.I. A posteriori estimates in local norms // J.Math. Sci. 2004. V. 124 № 3. P. 5026–5035.
- Prager W., Synge J.L. Approximations in elasticity based on the concept of functions space // Quart. Appl. Math. 1947. V. 5. P. 241–269.
- Mikhlin S.G. Variational Methods in Mathematical Physics. Oxford: Pergamon Press, 1964.
补充文件

