Точная формула для решения вырожденных систем квадратичных уравнений

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается система нелинейных уравнений вида F(x) = 0n, где отображение F квадратичное, действующее из nn. При этом производная F' в решении вырождена, что является одним из главных характеристических свойств нелинейности отображения. На основе конструкций теории p-регулярности предложен 2-фактор метод решения этой системы, который сходится с квадратичной скоростью. Более того, получена точная формула для решения данной системы квадратичных уравнений в случае 2-регулярности отображения F. Библ. 7.

Полный текст

Точная формула для решения вырожденных систем квадратичных уравнений [1]

ВВЕДЕНИЕ

Рассматривается система нелинейных уравнений вида F(x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaaaaa@3DF4@ , где отображение F определено как

F(x)=B [x] 2 +Mx+N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaadkeacaaIBbGaamiEaiaai2fadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGnbGaamiEaiabgUcaRiaad6eaca aISaaaaa@45BA@  (1)

где M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица размерности n×n, N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGobaaaa@38FA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  вектор из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  и B: n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGUbaaaaaa@49B0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  квадратичное отображение вида

B [x] 2 =B(x,x)= ( B 1 x,x),,( B n x,x) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaadkeacaaI OaGaamiEaiaaiYcacaWG4bGaaGykaiaai2dadaWadaqaaiaaiIcaca WGcbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiaaiYcacaWG4bGaaGyk aiaaiYcacqWIMaYscaaISaGaaGikaiaadkeadaWgaaWcbaGaamOBaa qabaGccaWG4bGaaGilaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWba aSqabeaacqGHKoavaaaaaa@551A@  (2)

для x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4680@  и B i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbWaaSbaaS qaaiaadMgaaeqaaaaa@3A08@  есть n×n симметричная матрица, i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGPbGaaGypai aaigdacaaISaGaeSOjGSKaaGilaiaad6gaaaa@3E18@ .

В статье описывается применение теории p-регулярности [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@ 3] к решению систем нелинейных уравнений с отображением F, введенным в (1). Цель статьи представить точную формулу для решения уравнения F(x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaaaaa@3DF4@ , где F(x) – квадратичное отображение вида (1) с вырождением в решении x*. Отметим, что нелинейные проблемы, среди которых квадратичные и полиномиальные уравнения, интенсивно исследуются в различных областях знаний и прикладных задачах. Оказывается, как это было показано в [4], нелинейность тесно связана с вырожденностью, а именно: так называемые существенно нелинейные задачи и вырожденные локально эквивалентны (см. [4]). Поэтому в данной статье исследуем системы квадратичных уравнений вида

B [x] 2 +Mx+N =0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamytaiaa dIhacqGHRaWkcaWGobGaaGypaiaaicdadaWgaaWcbaGaamOBaaqaba aaaa@43B0@  (3)

с вырождением, как основным характеристическим признаком нелинейности в решении. В данной статье покажем, как на основе теории p-регулярности и специальной конструкции 2-фактор оператора свести исходную задачу к системе линейных уравнений и получить формулу для решения системы (3).

Определение и обозначения. Обозначим через KerS={x n |Sx =0 m } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbacbaGaa8 xzaiaa=jhacaaMi8ocbiGaa43uaiaai2dacaaI7bGaa4hEaiabgIGi oprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae0xhHi 1aaWbaaSqabeaacaGFUbaaaOGaaGjcVlaaiYhacaaMi8Uaa43uaiaa +HhacaaI9aGaaGimamaaBaaaleaacaWGTbaabeaakiaai2haaaa@570C@  ядро линейного оператора S: n m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGtbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGTbaaaaaa@49C0@  и через ImS={ym |y=Sx для некоторого xn} MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  образ этого оператора.

Пусть B: n × n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaey41aqRae8xhHi1aaWbaaSqabeaaca WGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaacaWGUbaaaaaa@4E06@  непрерывное симметричное квадратичное отображение. 2-форма, ассоциированная с B, это отображение B [] 2 : n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai abgwSixlaai2fadaahaaWcbeqaaiaaikdaaaGccaGG6aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbe qaaiaad6gaaaGccqGHsgIRcqWFDeIudaahaaWcbeqaaiaad6gaaaaa aa@4EB9@  определено как B [x] 2 =B(x,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaG4wai aadIhacaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaadkeacaaI OaGaamiEaiaaiYcacaWG4bGaaGykaaaa@424D@ , x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4680@ . Будем использовать следующее обозначение Im 2 B={y n |x n :B [x] 2 =y} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaieaacaWFjbGaa8 xBaiaayIW7daahaaWcbeqaaiaaikdaaaGccaWGcbGaaGypaiaaiUha caWG5bGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaMi8UaaGiFaiaa yIW7cqGHdicjcaWG4bGaeyicI4Sae4xhHi1aaWbaaSqabeaacaWGUb aaaOGaaiOoaiaadkeacaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI9aGaamyEaiaai2haaaa@5F2B@  и Ker 2 B={x n |B [x] 2 =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaieaacaWFlbGaa8 xzaiaa=jhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaamOqaiaai2da caaI7bGaamiEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae4xhHi1aaWbaaSqabeaacaWGUbaaaOGaaGjcVlaa iYhacaaMi8UaamOqaiaaiUfacaWG4bGaaGyxamaaCaaaleqabaGaaG Omaaaakiaai2dacaaIWaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa @5AAA@ . Через N(x*) обозначим окрестность точки x*.

1. ЭЛЕМЕНТЫ ТЕОРИИ 2-РЕГУЛЯРНОСТИ

Напомним некоторые обозначения и определения теории 2-регулярности [1–7] для конечномерного случая и опишем несколько версий 2-фактор метода для решения вырожденных нелинейных уравнений. Проиллюстрируем, как применять модификацию 2-фактор метода для получения формулы решения нелинейной системы уравнений с квадратичным оператором. Рассмотрим нелинейную систему уравнений

F(x )=0 n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaGccaaI Saaaaa@3EB4@  (4)

где F MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  достаточно гладкое отображение из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@ , F(x)=( f 1 (x),, f n (x )) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaiIcacaWGMbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiablAciljaaiYcacaWGMbWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykamaaCaaa leqabaGaeyiPdqfaaaaa@4A76@ . Пусть x*-решение (4). Отображение F называется регулярным в точке x*, если

Im F ( x )= n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGjbGaaeyBai aayIW7ceWGgbGbauaacaaIOaaeaaaaaaaaa8qacaWG4bWaaWbaaSqa beaacqGHxiIkaaGcpaGaaGykaiaai2datuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaa aaa@4CA1@  (5)

или, другими словами,

rank F ( x )=n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGYbGaaeyyai aab6gacaqGRbGaaGjcVlqadAeagaqbaiaaiIcaqaaaaaaaaaWdbiaa dIhadaahaaWcbeqaaiabgEHiQaaak8aacaaIPaGaaGypaiaad6gaca aISaaaaa@446E@

где F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaceWGgbGbauaaca aIOaaeaaaaaaaaa8qacaWG4bWaaWbaaSqabeaacqGHxiIkaaGcpaGa aGykaaaa@3CB5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица Якоби отображения F в точке x*. Отображение называется нерегулярным (вырожденным), если (5) не выполнено. Пусть

n = Y 1 + Y 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaakiaai2dacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamywamaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@4A07@   Y 1 =Im F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGypaiaabMeacaqGTbGaaGjcVlqadAeagaqb aiaaiIcaqaaaaaaaaaWdbiaadIhadaahaaWcbeqaaiabgEHiQaaak8 aacaaIPaaaaa@4298@ , Y 2 = Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaikdaaeqaaOGaaGypaiaadMfadaqhaaWcbaGaaGymaaqaaiab gwQiEbaaaaa@3E35@ . (6)

Определим отображения

F i (x): n Y i , F i (x)= P Y i F(x),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbWaaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadIhacaaIPaGaaiOoamrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabe aacaWGUbaaaOGaeyOKH4QaamywamaaBaaaleaacaWGPbaabeaakiaa iYcacaaMf8UaaGzbVlaadAeadaWgaaWcbaGaamyAaaqabaGccaaIOa GaamiEaiaaiMcacaaI9aGaamiuamaaBaaaleaacaWGzbWaaSbaaeaa caWGPbaabeaaaeqaaOGaamOraiaaiIcacaWG4bGaaGykaiaaiYcaca aMf8UaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaaaa @6480@

где P Y i : n Y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaadMgaaeqaaaqabaGccaGG6aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbe qaaiaad6gaaaGccqGHsgIRcaWGzbWaaSbaaSqaaiaadMgaaeqaaaaa @4BA4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  ортопроектор на Y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaadMgaaeqaaaaa@3A1F@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGPbGaaGypai aaigdacaaISaGaaGOmaaaa@3C09@ . Тогда F может быть представлено как F(x):= F 1 (x)+ F 2 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGOoaiaai2dacaWGgbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaey4kaSIaamOramaaBaaaleaacaaIYa aabeaakiaaiIcacaWG4bGaaGykaaaa@45FE@  или F(x)=( F 1 (x), F 2 (x )) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaiIcacaWGgbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiaadAeadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiEaiaaiMcacaaIPaWaaWbaaSqabeaacqGHKoav aaaaaa@4827@ .

Определение 1. Линейный оператор Ψ 2 (h)L( n , Y 1 Y 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiAaiaaiMcacqGHiiIZtuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimjaaiIcatu uDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risnaa CaaaleqabaGaamOBaaaakiaaiYcacaWGzbWaaSbaaSqaaiaaigdaae qaaOGaeyyLIuSaamywamaaBaaaleaacaaIYaaabeaakiaaiMcaaaa@5CB1@ , где h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyiyIK RaaGimaaaa@3B95@ , определенный как

Ψ 2 (h)= F 1 ( x )+ F 2 ( x )[h], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiAaiaaiMcacaaI9aGabmOrayaa faWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhadaahaaWcbeqaai abgEHiQaaakiaaiMcacqGHRaWkceWGgbGbauGbauaadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaG ykaiaaiUfacaWGObGaaGyxaiaaiYcaaaa@4CBE@

называется 2-фактор оператором. (Или 2-фактор оператором, порожденным вектором h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObaaaa@3914@ .)

Рассмотрим нелинейный оператор Ψ 2 [] 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaeyyXICTaaGyxamaaCaaaleqabaGa aGOmaaaaaaa@3FA7@  такой, что

Ψ 2 [x] 2 := F 1 ( x )[x]+ F 2 ( x )[x ] 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI6aGaaGypaiqadAeagaqbamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaGaaG4w aiaadIhacaaIDbGaey4kaSIabmOrayaafyaafaWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaakiaaiMca caaIBbGaamiEaiaai2fadaahaaWcbeqaaiaaikdaaaGccaaIUaaaaa@52BA@

Заметим, что Ψ 2 [x] 2 = Ψ 2 (x)[x] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaGccaaIBbGaamiEaiaai2fadaahaaWcbeqaaiaa ikdaaaGccaaI9aGaeuiQdK1aaSbaaSqaaiaaikdaaeqaaOGaaGikai aadIhacaaIPaGaaG4waiaadIhacaaIDbaaaa@46D7@ .

Определение 2. 2-ядро оператора Ψ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHOoqwdaWgaa WcbaGaaGOmaaqabaaaaa@3A9E@  обозначим

H 2 =Ker 2 Ψ 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGibWaaSbaaS qaaiaaikdaaeqaaOGaaGypaiaabUeacaqGLbGaaeOCaiaayIW7daah aaWcbeqaaiaaikdaaaGccqqHOoqwdaWgaaWcbaGaaGOmaaqabaGcca aISaaaaa@4313@

где Ker 2 Ψ 2 ={h n | F 1 ( x )[h]+ F 2 ( x )[h ] 2 =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaeuiQdK1aaSbaaSqa aiaaikdaaeqaaOGaaGypaiaaiUhacaWGObGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaGccaaMi8UaaGiFaiaayIW7ceWGgbGbauaadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGa aGykaiaaiUfacaWGObGaaGyxaiabgUcaRiqadAeagaqbgaqbamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIk aaGccaaIPaGaaG4waiaadIgacaaIDbWaaWbaaSqabeaacaaIYaaaaO GaaGypaiaaicdadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@69C2@ . Отметим, что Ker 2 Ψ 2 = k=1 2 Ker k F k (k) ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaaIYaaaaOGaeuiQdK1aaSbaaSqa aiaaikdaaeqaaOGaaGypamaauadabeWcbaGaam4Aaiaai2dacaaIXa aabaGaaGOmaaqdcqWIPissaOGaae4saiaabwgacaqGYbGaaGjcVpaa CaaaleqabaGaam4AaaaakiaadAeadaqhaaWcbaGaam4AaaqaaiaaiI cacaWGRbGaaGykaaaakiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIk aaGccaaIPaaaaa@5290@ ,

где Ker k F k (k) ( x )={ξ n | F k (k) ( x )[ξ ] k =0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaqGlbGaaeyzai aabkhacaaMi8+aaWbaaSqabeaacaWGRbaaaOGaamOramaaDaaaleaa caWGRbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiaadIhadaahaa WcbeqaaiabgEHiQaaakiaaiMcacaaI9aGaaG4Eaiabe67a4jabgIGi oprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi 1aaWbaaSqabeaacaWGUbaaaOGaaGjcVlaaiYhacaaMi8UaamOramaa DaaaleaacaWGRbaabaGaaGikaiaadUgacaaIPaaaaOGaaGikaiaadI hadaahaaWcbeqaaiabgEHiQaaakiaaiMcacaaIBbGaeqOVdGNaaGyx amaaCaaaleqabaGaam4Aaaaakiaai2dacaaIWaWaaSbaaSqaaiaad6 gaaeqaaOGaaGyFaaaa@6AAC@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGRbaaaa@3917@  – ядро оператора F k (k) ()[ ] k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbWaa0baaS qaaiaadUgaaeaacaaIOaGaam4AaiaaiMcaaaGccaaIOaGaeyyXICTa aGykaiaaiUfacqGHflY1caaIDbWaaWbaaSqabeaacaWGRbaaaaaa@4550@ , k=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGRbGaaGypai aaigdacaaISaGaaGOmaaaa@3C0B@ .

Определение 3. Отображение F называется 2-регулярным в точке x* на h, если Im Ψ 2 (h)= n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaciGGjbGaaiyBai aayIW7cqqHOoqwdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiAaiaa iMcacaaI9aWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiu aacqWFDeIudaahaaWcbeqaaiaad6gaaaaaaa@4CEA@ .

Определение 4. Отображение F называется 2-регулярным в точке x*, если оно 2-регулярно на каждом h H 2 ( x )\ {0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 SaamisamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaWbaaSqa beaacqGHxiIkaaGccaaIPaGaaiixaiaaiUhacaaIWaWaaSbaaSqaai aad6gaaeqaaOGaaGyFaaaa@44AE@  или H 2 ( x )={0 n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGibWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaa kiaaiMcacaaI9aGaaG4EaiaaicdadaWgaaWcbaGaamOBaaqabaGcca aI9baaaa@4224@ .

2. 2-ФАКТОР МЕТОД РЕШЕНИЯ ВЫРОЖДЕННЫХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Для решения системы (4) воспользуемся 2-фактор методом, предложенным в [1]:

x k+1 = x k { F ( x k )+ P Y 2 F ( x k )h} 1 F( x k )+ P Y 2 F ( x k )h , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0IaaG4EaiqadAeagaqbaiaaiIcacaWG4b WaaSbaaSqaaiaadUgaaeqaaOGaaGykaiabgUcaRiaadcfadaWgaaWc baGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadAeagaGbaiaaiI cacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaadIgacaaI9bWa aWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGgbGaaGikai aadIhadaWgaaWcbaGaam4AaaqabaGccaaIPaGaey4kaSIaamiuamaa BaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGabmOrayaafa GaaGikaiaadIhadaWgaaWcbaGaam4AaaqabaGccaaIPaGaamiAaaGa ayjkaiaawMcaaiaaiYcaaaa@6083@  (7)

где вектор h, h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  выбирается таким образом, чтобы матрица F ( x )+ P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqadaqaaiqadA eagaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaGa ey4kaSIaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaae qaaOGabmOrayaagaGaaGikaiaadIhadaahaaWcbeqaaiabgEHiQaaa kiaaiMcacaWGObaacaGLOaGaayzkaaaaaa@4704@  была обратима. Фактически схема (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  это схема метода Ньютона для решения системы

Φ(x)=F(x)+ P Y 2 F (x)h =0 n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHMoGrcaaIOa GaamiEaiaaiMcacaaI9aGaamOraiaaiIcacaWG4bGaaGykaiabgUca RiaadcfadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaaki qadAeagaqbaiaaiIcacaWG4bGaaGykaiaadIgacaaI9aGaaGimamaa BaaaleaacaWGUbaabeaakiaai6caaaa@4B27@  (8)

Следующий результат устанавливает факт сходимости 2-фактор метода (7).

Теорема 1. Пусть F C 3 ( n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaeyicI4 Saam4qamaaCaaaleqabaGaaG4maaaakiaaiIcatuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaam OBaaaakiaaiMcaaaa@4979@  и x* MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  решение (4). Предположим, что существует вектор h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  такой, что F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbaaaa@38F2@   2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaaaaa@38E3@  -регулярно в точке x * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaWbaaS qabeaacaaIQaaaaaaa@3A05@  на элементе h, т.е. матрица F ( x )+ P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaceWGgbGbauaaca aIOaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiabgUcaRiaa dcfadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadA eagaqbgaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaI PaGaamiAaaaa@4585@  не вырождена.

Тогда существует окрестность N(x*) точки x* такая, что для x 0 N( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamOtaiaaiIcacaWG4bWaaWbaaSqa beaacqGHxiIkaaGccaaIPaaaaa@3FF3@  последовательность { x k } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaI7bGaamiEam aaBaaaleaacaWGRbaabeaakiaai2haaaa@3C56@ , генерируемая 2-фактор методом (7), сходится к x*, причем

x k+1 x C x k x 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaqaaaaaaaaaWdbm aafmaabaWdaiaadIhadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqa aOGaeyOeI0YdbiaadIhadaahaaWcbeqaaiabgEHiQaaaaOGaayzcSl aawQa7a8aacqGHKjYOcaWGdbWdbmaafmaabaWdaiaadIhadaWgaaWc baGaam4AaaqabaGccqGHsislpeGaamiEamaaCaaaleqabaGaey4fIO caaaGccaGLjWUaayPcSdWdamaaCaaaleqabaGaaGOmaaaakiaaiYca aaa@4F2A@  (9)

где C > 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  независимая константа.

Доказательство. Поскольку схема (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  это метод Ньютона, примененный к системе (8), и матрица Φ ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacuqHMoGrgaqbai aaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGccaaIPaaaaa@3D35@  не вырождена из условия 2-регулярности F в точке x* на векторе h, причем Φ( x )=0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacqqHMoGrcaaIOa aeaaaaaaaaa8qacaWG4bWaaWbaaSqabeaacqGHxiIkaaGcpaGaaGyk aiaai2dacaaIWaWaaSbaaSqaaiaad6gaaeqaaaaa@3FF8@ , то схему (7) можно переписать в виде

x k+1 = x k Φ ( x k ) 1 Φ( x k ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0IafuOPdyKbauaacaaIOaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiMcadaahaaWcbeqaaiabgkHiTiaaigda aaGccqqHMoGrcaaIOaGaamiEamaaBaaaleaacaWGRbaabeaakiaaiM cacaaISaaaaa@4C63@  (10)

для которой будет верна оценка (9). Теорема доказана.

Рассмотрим другую версию 2-фактор метода для решения системы (4). Поскольку

P Y 2 F ( x )h =0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbauaacaaI OaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiaadIgacaaI9a GaaGimamaaBaaaleaacaWGUbaabeaaaaa@42D9@  (11)

для любого h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , то можем рассматривать уравнение

P Y 2 F (x)h =0 n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbauaacaaI OaGaamiEaiaaiMcacaWGObGaaGypaiaaicdadaWgaaWcbaGaamOBaa qabaGccaaIUaaaaa@4275@  (12)

Причем, если на элементе h существует P Y 2 F ( x * )h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqadaqaaiaadc fadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiqadAea gaGbaiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiaadI gaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@435D@ , то точка x* будет локально единственным решением уравнения (12). Поэтому для решения (4) можно рассмотреть схему

x k+1 = x k P Y 2 F ( x k )h 1 P Y 2 F ( x k )h,k=0,1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaaabeaakiaai2dacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaeyOeI0YaaeWaaeaacaWGqbWaaSbaaSqaaiaadM fadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbayaacaaIOaGaamiE amaaBaaaleaacaWGRbaabeaakiaaiMcacaWGObaacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamiuamaaBaaaleaacaWG zbWaaSbaaeaacaaIYaaabeaaaeqaaOGabmOrayaafaGaaGikaiaadI hadaWgaaWcbaGaam4AaaqabaGccaaIPaGaamiAaiaaiYcacaaMf8Ua aGzbVlaadUgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaaaa@5BB5@  (13)

для которой будет справедлива следующая теорема сходимости.

Теорема 2. Пусть F C 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaeyicI4 Saam4qamaaCaaaleqabaGaaG4maaaaaaa@3C28@ , x* MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  решение (4). Предположим, что существует вектор h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObaaaa@3914@ , h =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI gaaiaawMa7caGLkWoacaaI9aGaaGymaaaa@3DBD@  такой, что матрица P Y 2 F ( x )h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGcceWGgbGbayaacaaI OaGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGykaiaadIgaaaa@403A@  не вырождена.

Тогда для x 0 N( x * ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamOtaiaaiIcacaWG4bWaaWbaaSqa beaacaaIQaaaaOGaaGykaaaa@3FB8@  последовательность (13) сходится к x*, причем

x k+1 x C x k x 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaqbdaqaaiaadI hadaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaamiE amaaCaaaleqabaGaey4fIOcaaaGccaGLjWUaayPcSdGaeyizImQaam 4qamaafmaabaGaamiEamaaBaaaleaacaWGRbaabeaakiabgkHiTiaa dIhadaahaaWcbeqaaiabgEHiQaaaaOGaayzcSlaawQa7amaaCaaale qabaGaaGOmaaaakiaaiYcaaaa@4E9E@

где C>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGdbGaaGOpai aaicdaaaa@3A71@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3792@  независимая константа.

Доказательство<. Следует из доказательства сходимости классического метода Ньютона. Отметим, что в схеме (13) оператор P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@  определен в точке x*. Способы его построения по текущей точке xk из достаточно малой окрестности N(x*) описаны в [7], и мы не будем здесь останавливаться на этом моменте.

3. НЕЛИНЕЙНЫЕ УРАВНЕНИЯ С КВАДРАТИЧНЫМИ ОТОБРАЖЕНИЯМИ. ТОЧНАЯ ФОРМУЛА

Пусть теперь отображение F определяется как

F(x)=B [x] 2 +Mx+N, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaadkeacaaIBbGaamiEaiaai2fadaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGnbGaamiEaiabgUcaRiaad6eaca aISaaaaa@45BA@  (14)

где M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  матрица размерности n×n, N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGobaaaa@38FA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  вектор из n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGa amOBaaaaaaa@43FF@  и B: n n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaWGUbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca WGUbaaaaaa@49B0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  отображение, определенное формулой (2). Рассмотрим, как 2-фактор метод (13) может быть применен для поиска решения уравнения (14).

Более того, покажем, что 2-фактор метод (13) сходится за одну итерацию к решению x* уравнения (14), и дадим точную формулу для решения x* уравнения (14). Для уравнения (14) предположения теоремы 2 сводятся к существованию вектора h 0 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyiyIK RaaGimamaaBaaaleaacaWGUbaabeaaaaa@3CB4@  такого, что

1)

P Y 2 (2B[ x ]+M)h =0 n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGccaaIOaGaaGOmaiaa dkeacaaIBbGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGyxaiabgU caRiaad2eacaaIPaGaamiAaiaai2dacaaIWaWaaSbaaSqaaiaad6ga aeqaaOGaaiilaaaa@47BF@  (15)

2)

PY22Bh не вырождена . (16)

При этом соотношение (15) выполнено для любого h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , так как (2B[ x ]+M)hIm F ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIOaGaaGOmai aadkeacaaIBbGaamiEamaaCaaaleqabaGaey4fIOcaaOGaaGyxaiab gUcaRiaad2eacaaIPaGaamiAaiabgIGiolaabMeaieaacaWFTbGaaG jcVlqadAeagaqbaiaaiIcacaWG4bWaaWbaaSqabeaacqGHxiIkaaGc caaIPaaaaa@4AD6@ , а P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3790@  ортопроектор на (Im F ( x * )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIOaGaaeysai aab2gacaaMi8UabmOrayaafaGaaGikaiaadIhadaahaaWcbeqaaiaa iQcaaaGccaaIPaGaaGykamaaCaaaleqabaGaeyyPI4faaaaa@42DB@ . Проблема состоит в построении оператора P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@ , который, вообще говоря, определяется неизвестной точкой x*. Однако при x 0 U ε ( x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaeyicI4SaamyvamaaBaaaleaacqaH1oqzaeqa aOGaaGikaabaaaaaaaaapeGaamiEamaaCaaaleqabaGaey4fIOcaaO WdaiaaiMcaaaa@4206@ , где ε>0 достаточно малое, мы можем восстановить оператор P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@ , используя только информацию о точке x0. Полное описание этого факта и саму процедуру построения оператора P Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaaaaa@3AE3@  можно найти, например, в [7].

Тогда первая итерация 2-фактор метода дает

x 1 = x 0 (2 P Y 2 Bh) 1 [2 P Y 2 (B x 0 +M)h], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGypaiaadIhadaWgaaWcbaGaaGimaaqabaGc cqGHsislcaaIOaGaaGOmaiaadcfadaWgaaWcbaGaamywamaaBaaaba GaaGOmaaqabaaabeaakiaadkeacaWGObGaaGykamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaaiUfacaaIYaGaamiuamaaBaaaleaacaWGzb WaaSbaaeaacaaIYaaabeaaaeqaaOGaaGikaiaadkeacaWG4bWaaSba aSqaaiaaicdaaeqaaOGaey4kaSIaamytaiaaiMcacaWGObGaaGyxai aaiYcaaaa@52EE@  (17)

что эквивалентно 2 P Y 2 Bh( x 1 x 0 )=(2 P Y 2 B x 0 +M)h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaGaamiuam aaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamOqaiaa dIgacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadI hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiabgkHiTiaaiIca caaIYaGaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaae qaaOGaamOqaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG nbGaaGykaiaadIgaaaa@4F7A@ . Учитывая, что 2 P Y 2 B[h, x 0 ]=2 P Y 2 B[ x 0 ,h] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaaIYaGaamiuam aaBaaaleaacaWGzbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamOqaiaa iUfacaWGObGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaIDb GaaGypaiaaikdacaWGqbWaaSbaaSqaaiaadMfadaWgaaqaaiaaikda aeqaaaqabaGccaWGcbGaaG4waiaadIhadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiAaiaai2faaaa@4C38@ , получаем

x 1 = x = 1 2 P Y 2 Bh 1 (Mh), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGypaabaaaaaaaaapeGaamiEamaaCaaaleqa baGaey4fIOcaaOWdaiaai2dacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaamaadmaabaGaamiuamaaBaaaleaacaWGzbWaaSbaaeaacaaI YaaabeaaaeqaaOGaamOqaiaadIgaaiaawUfacaGLDbaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccqGHflY1caaIOaGaamytaiaadIgacaaI PaGaaGilaaaa@4ED8@  (18)

где вектор h удовлетворяет условию (16).

Отметим, что множество векторов h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIu daahaaWcbeqaaiaad6gaaaaaaa@4670@ , для которых выполнено условие (16), является массивным множеством (см. [3]), и поэтому мы не будем в данной статье останавливаться на способах построения векторов h, удовлетворяющих (16).

Пример 1. Рассмотрим отображение F: 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaiOoam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1a aWbaaSqabeaacaaIYaaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaaca aIYaaaaaaa@4946@  следующего вида:

F(x)= x 1 2 x 2 2 2 x 1 +1 x 1 x 2 x 2 = 0 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypamaabmaabaqbaeqabiqaaaqaaiaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccqGHsislcaWG4bWaa0baaSqaai aaikdaaeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaaIXaaabaGaamiEamaaBaaaleaacaaIXa aabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG4bWa aSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaai2dadaqada qaauaabeqaceaaaeaacaaIWaaabaGaaGimaaaaaiaawIcacaGLPaaa caaIUaaaaa@546B@  (19)

Представим отображение F в форме (14) при

B= 1 0 0 1 0 1 2 1 2 0 ,M= 2 0 0 1 ,N= 1 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGcbGaaGypam aabmaabaqbaeqabiqaaaqaamaabmaabaqbaeqabiGaaaqaaiaaigda aeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaaaacaGLOaGaay zkaaaabaWaaeWaaeaafaqabeGacaaabaGaaGimaaqaamaalaaabaGa aGymaaqaaiaaikdaaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaae aacaaIWaaaaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaacaaISaGa aGzbVlaaywW7caWGnbGaaGypamaabmaabaqbaeqabiGaaaqaaiabgk HiTiaaikdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaaigdaaaaa caGLOaGaayzkaaGaaGilaiaaywW7caaMf8UaamOtaiaai2dadaqada qaauaabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaa caaIUaaaaa@5BCE@

Уравнение F(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGgbGaaGikai aadIhacaaIPaGaaGypaiaaicdaaaa@3CD5@  имеет локально единственное решение x =(1,0) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWG4bWaaWbaaS qabeaacqGHxiIkaaGccaaI9aGaaGikaiaaigdacaaISaGaaGimaiaa iMcadaahaaWcbeqaaiabgs6aubaaaaa@4055@ . В этом примере Y 1 = 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGypamaabmaabaqbaeqabiqaaaqaaiaaicda aeaacaaIWaaaaaGaayjkaiaawMcaaaaa@3DC7@ , Y 2 = 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGzbWaaSbaaS qaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaaIYaaaaaaa@465F@ , P Y 1 =[0] 2×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaigdaaeqaaaqabaGccaaI9aGaaG4waiaa icdacaaIDbWaaSbaaSqaaiaaikdacqGHxdaTcaaIYaaabeaaaaa@41F4@ , P Y 2 =[I ] 2×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGqbWaaSbaaS qaaiaadMfadaWgaaqaaiaaikdaaeqaaaqabaGccaaI9aGaaG4waiaa dMeacaaIDbWaaSbaaSqaaiaaikdacqGHxdaTcaaIYaaabeaaaaa@4209@ , h =(1,0) Τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaacaWGObGaaGypai aaiIcacaaIXaGaaGilaiaaicdacaaIPaWaaWbaaSqabeaacqGHKoav aaaaaa@3F1F@ . Следовательно, применяя формулу (18), получаем

x ˜ = 1 2 [ P Y 2 Bh] 1 (Mh)= 1 2 1 0 0 2 2 0 = 1 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaaqaaaaaaaaaWdbm aaGaaabaGaamiEaaGaay5adaWaaWbaaSqabeaacqGHxiIkaaGcpaGa aGypaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaG4waiaadc fadaWgaaWcbaGaamywamaaBaaabaGaaGOmaaqabaaabeaakiaadkea caWGObGaaGyxamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcaca WGnbGaamiAaiaaiMcacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaadaWadaqaauaabeqaciaaaeaacaaIXaaabaGaaGimaaqaai aaicdaaeaacaaIYaaaaaGaay5waiaaw2faamaabmaabaqbaeqabiqa aaqaaiabgkHiTiaaikdaaeaacaaIWaaaaaGaayjkaiaawMcaaiaai2 dadaqadaqaauaabeqaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIca caGLPaaacaaISaaaaa@5A68@

что означает x ˜ = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacH8WrFv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFL0dir=xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr 0db8meaabaqaciaacaWaaeqabaqabeGaeaaakeaadaaiaaqaaiaadI haaiaawoWaamaaCaaaleqabaGaey4fIOcaaOGaaGypaiaadIhadaah aaWcbeqaaiabgEHiQaaaaaa@3DEC@ , и мы получаем точную формулу для решения системы квадратичных уравнений (14).

 

1 Работа выполнена при финансовой поддержке РНФ (проект № 21-71-30005).

×

Об авторах

Ю. Г. Евтушенко

ФИЦ ИУ РАН; Московский физико-технический институт (государственный университет)

Автор, ответственный за переписку.
Email: yuri-evtushenko@yandex.ru
Россия, 119333 Москва, ул. Вавилова, 44; 141701 Долгопрудный, М.о., Институтский переулок, 9

А. А. Третьяков

ФИЦ ИУ РАН; Siedlce University

Email: prof.tretyakov@gmail.com

Faculty of Exact and Natural Sciences

Россия, 119333 Москва, ул. Вавилова, 44; 08-110S Седльце, Польша

Список литературы

  1. Белаш К.Н., Третьяков А.А. Методы решения вырожденных задач // Ж. вычисл. матем. и матем. физ. 1988. Т. 28. №. 7. С. 1097–1102.
  2. Белаш К.Н. Решение систем нелинейных уравнений общего вида // Ж. вычисл. матем. и матем. физ. 1990. Т. 30. №. 6. С. 837–843.
  3. Измайлов A.Ф., Третьяков А.А. Фактор-анализ нелинейных отображений. М.: Наука, 1994.
  4. Tret’yakov A., Marsden J.E. Factor analysis of nonlinear mappings: p-regularity theory // Communications on Pure & Applied Analysis. 2003. Vol. 2. No. 4. P. 425–445.
  5. Facchinei F., Fisher A., Kanzow C. On the Accurate Identification of Active Constraints // SIAM J. Optim. 1998. No. 9. P. 14–32.
  6. Измайлов А.Ф., Третьяков А.А. 2-регулярные решения нелинейных задач. Теория и численные методы. М.: Физматлит, 1999.
  7. Брежнева О.А., Третьяков А.А. Новые методы решения существенно нелинейных задач. М.: ВЦ РАН, 2000.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).