RATIONAL COEFFICIENTS OF ORTHOGONAL DECOMPOSITIONS OF CERTAIN FUNCTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Decompositions of many elementary and special functions into series by orthogonal polynomials have coefficients known explicitly. However, these coefficients are almost always irrational. Therefore, any numerical method gives these coefficients approximately when calculating in any arithmetic. This also applies to spectral methods that provide efficient approximations of holonomic functions. However, in some exceptional cases, the expansion coefficients obtained by the spectral method turn out to be rational and are calculated exactly in rational arithmetic. We consider such decompositions with respect to some classical orthogonal polynomials. It is shown that in this way it is possible to obtain an infinite set of linear forms for some irrationalities, in particular, for Euler’s constant.

About the authors

V. P Varin

Keldysh Institute of Applied Mathematics, RAS

Email: varin@keldysh.ru
Moscow, Russia

References

  1. Pashkovskii S. Computational Application of Chebyshev Polynomials and Series (Nauka, Moscow, 1983) [in Russian].
  2. Варин В.П. Аптроксимация дифференциальных операторов с учетом граничных условий // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1251–1271.
  3. Варин В.П. Spectral methods for solution of differential and functional equations // Comp. Math. and Math. Phys. 2024. V. 64. № 5. P. 888–904.
  4. Арнёклеч А.І. On linear forms containing the Euler constant // [arXiv:0902.1768v2] (2009). (http://arxiv.org/abs/0902.1768v2).
  5. Арнёклеч А.І., Тиуакюч D.N. Four-termed recurrence relations for γ-forms // Sovrem. Probl. Math. 2007. Iss. 9. P. 37–43.
  6. Belabas K., Cohen H. Numerical Algorithms for Number Theory. Mathematical Surveys and Monographs, V. 254. Amer. Math. Soc. (2021).
  7. Варин В.П. Преобразование последовательностей в доказательствах иррациональности некоторых фундаментальных констант // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1587–1614.
  8. Huang H., Kauers M. D-finite numbers // Inter. J. Number Theor. 2016. (https://www.researchgate.net/publication/310595024).
  9. Tchebichef P.I. Sur le développement des fonctions a une seule variable // Bull. de l’Acad. Imperiale des Sci. de St. Petersbourg. 1859. V. 1. P. 193–200.
  10. Gantmacher F.R. Application of the Theory of Matrices (Chelsea Press, New-York, 1960).
  11. Gradsheyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products (7th ed. Acad. Press, Elsevier, 2007).
  12. Варин В.П. Функциональное суммирование рядов // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 1. С. 3–17.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».