MATHEMATICAL RECONSTRUCTION OF SIGNALS AND IMAGES USING TEST TRIALS: A NON-BLIND APPROACH

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers a mathematical method for the non-blind recovery of regular and multidimensional signals, including images distorted in processing by linear stationary systems. Instead of transfer functions, which are often difficult to determine, this method directly utilizes the trial test signals of processing systems to non-blindly recover of the signal from the test equation. The use of test signals belonging to the class of core functions greatly simplifies the signal recovery procedure and makes it more accurate and robust. The operator approach based on the multivariate convolution equation significantly improves the speed of numerical computation. Regularization technique is used to solve incorrectly posed and ill-conditioned problems, which allows efficiently recovering of real nondeterministic signals with noise and uncertainties. The influence of the test signals type on the recovery accuracy is analyzed and a method of their formation is proposed in the paper. Numerical experiments demonstrating the stability and efficiency of the proposed algorithm when recovering one-dimensional signals and two-dimensional images at high level of noise and uncertainties in data are considered. The proposed technique is able to improve the quality of signal and image processing without the need to modify complex and expensive equipment, to expand the field of practical application of mathematical reconstruction methods. Program codes and datasets are available at: https://github.com/novikov-borodin/data-rec.

About the authors

A. V. Novikov-Borodin

Institute for Nuclear Research (INR), Russian Academy of Sciences

Email: novikov.borodin@gmail.com
Moscow, Russia

References

  1. Kazufumi I., Bangti J. Inverse Problems: Tikhonov Theory and Algorithms. Singapore: World Scientific, 2014.
  2. Mueller J.L., Siltanen S. Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, vol. 10, 2012.
  3. Hansen P.C. Discrete Inverse Problems: Insight and Algorithms. Fundamentals of Algorithms. Philadelphia: SIAM, 2010.
  4. Kaipio J., Somersalo E. Statistical and computational inverse problems. N.Y.: Springer, 2010.
  5. Hespanha J.P. Linear System Theory. Princeton university press, 2009.
  6. Dominguez A. A History of the Convolution Operation. IEEE Pulse. V. 6(1): 38–49, 2015.
  7. Sobolev V.I. Convolution of functions, Encyclopedia of Mathematics. EMS Press, Helsinki, 2001.
  8. Vladimirov V.S. Equations of Mathematical Physics. M.: Nauka, 1981; Dekker, New York, 1971.
  9. Liu X., Wu Z., Wang X. The validity analysis of the non-local mean filter and a derived novel denoising method. Virtual Reality & Intelligent Hardware 2023. 5(4): 338–350.
  10. Wang H. et al. Ambulatory ECG noise reduction algorithm for conditional diffusion model based on multi-kernel convolutional transformer. The Review of scientific instruments. 2024. 95(9): 95–107.
  11. Guo X., Liu F., Tian X. Gaussian noise level estimation for color image denoising // J. Opt. Soc. Am. A, 2021. 38(8): 1150–1159. https://doi.org/10.1364/josaa.426092
  12. Chan T.F., Wong C.K. Total variation blind deconvolution // IEEE transactions on Image Processing, 1998. 7(3): 370–375.
  13. Levin A., et al. Understanding and evaluating blind deconvolution algorithms. 2009 IEEE conference on computer vision and pattern recognition, IEEE, 2009.
  14. Almeida M., Figueiredo M. Blind image deblurring with unknown boundaries using the alternating direction method of multipliers. 2013 IEEE International Conference on Image Processing, IEEE, 2013.
  15. Junjie T. A.O., et al. An image defocus deblurring method based on gradient difference of boundary neighborhood. Virtual Reality & Intelligent Hardware, 5(6): 538–549, 2023. doi: 10.1016/j.vrih.2023.06.008
  16. Schuler C. J., Hirsch M., Harmeling S., Scholkopf B. Learning to deblur. IEEE transactions on pattern analysis and machine intelligence, 38(7): 1439–1451, 2015. doi: 10.1109/TPAMI.2015.2481418
  17. Kupyn O., et al. Deblurgan: Blind motion deblurring using conditional adversarial networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  18. Jung Y., Jim Kong J., Bin Sheng B., Kim J. A Transfer Function Design for Medical Volume Data Using a Knowledge Database Based on Deep Image and Primitive Intensity Profile Features Retrieval // Journal of Computer Science and Technology, 2024. 39(9): 320–335.
  19. Li J., et al. DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis. IEEE Transactions on Medical Imaging, 2024. 43(1): 64–75. doi: 10.1109/TMI.2023.3289859.
  20. Malay I. Digital Signal Processing in Modern Radio Engineering Measurements. Plenary Talk at XXV International Conference Digital Signal Processing and Its Applications – DSPA-2023, 2023.
  21. Tikhonov A. N., Arsenin, V. Y. Solutions of Ill-Posed Problems. New York: Winston, 1977.
  22. Elsayed M.A., El-Shafai W., Rashwan M.A., Dessouky M.I., El-Fishawy A.S., Abd El-Samie F.E. Efficient iterative implementation of regularized solutions for image and signal reconstruction problems // J. of Optics, 2023. doi: 10.1007/s12596-023-01179-w
  23. Xiao Z., Fang H., Tomasin S., Mateos G., Wang X. Joint Sampling and Reconstruction of Time-Varying Signals Over Directed Graphs. IEEE Transactions on Signal Processing, 2023. 71: 2204–2219. doi: 10.1109/TSP.2023.3284364
  24. Novikov-Borodin A.V. Test Methods for Signal Reconstruction of Linear Stationary Systems // Journal of Communications Technology and Electronics, 2023. V. 68(7): 732–747. doi: 10.1134/S1064226923070082
  25. Novikov-Borodin A.V. Reconstruction and simulation of experimental data using test measurements. Instruments and Experimental Techniques, 2022. 2: 43–51. doi: 10.1134/S0020441222020166

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).