SPECTRAL METHODS OF POLYNOMIAL INTERPOLATION AND APPROXIMATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The classical problem of interpolation and approximation of functions by polynomials is considered here as a special case of spectral representation of functions. This approach was previously developed by us for the orthogonal Legendre and Chebyshev polynomials. Here, we use fundamental Newton polynomials as basis functions. It is shown that the spectral approach has computational advantages over the divided difference method. In a number of problems, Newton and Hermite interpolations are indistinguishable with our approach and are calculated using the same formulas. Also, the computational algorithms that we proposed earlier using orthogonal polynomials are transferred without changes to Newton and Hermite polynomials.

About the authors

V. P Varin

Keldysh Institute of Applied Mathematics RAS

Email: varin@keldysh.ru
Moscow, Russia

References

  1. Davis P.J. Interpolation and Approximation. New-York: Dover. 1975.
  2. Варин В.П. Аппроксимация дифференциальных операторов с учетом граничных условий // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1251–1271.
  3. Варин В.П. Спектральные методы решения дифференциальных и функциональных уравнений // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 5. С.713–728.
  4. P. M. M. “Interpolation.” By J. F. STEFFENSEN, SC.D., Professor of Actuarial Science at the University of Copenhagen // REVIEWS. P. 325–332. (1927). https://www.cambridge.org/core
  5. Steffensen J.F. Interpolation. Baltimore: The Williams and Wilkins Co. 1927.
  6. Milne-Thomson L.M. The Calculus of Finite Differences. London: Macmillan and Co. 1933.
  7. Wilf H.S. Mathematics for the physical sciences. NewYork: Wiley. 1962.
  8. Opitz G. Steigungsmatrizen // Z. Angew. Math. Mech. 1964. V. 44. T52–T54.
  9. Gantmacher F.R. Application of the Theory of Matrices. New-York: Chelsea Press. 1960.
  10. Markoff A.A. Differenzenrechnung. Leipzig: Teubner. 1896.
  11. Trefethen L.N. Approximation Theory and Approximation Practice. SIAM. 2013.
  12. Варин В.П. Преобразование последовательностей в доказательствах иррациональности некоторых фундаментальных констант // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1587–1614.
  13. Burden R.L., Faires J.D. Numerical analysis. 9th ed. Boston: Brooks/Cole. 2010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).