SOLVABILITY THEORY OF SPECIAL INTEGRODIFFERENTIAL EQUATIONS IN THE CLASS OF GENERALIZED FUNCTIONS

Cover Page

Cite item

Abstract

A linear integrodifferential equation with a special differential operator in the principal part is studied. For its approximate solution in the space of generalized functions, a special generalized version of the collocation method is proposed and justified.

About the authors

N. S. Gabbasov

Naberezhnye Chelny Institute of Kazan University

Email: gabbasovnazim@rambler.ru
Naberezhnye Chelny, Russia

References

  1. Bart G.R., Warnock R.L. Linear integral equations of the third-kind // SIAM J. Math. Anal. 1973. V. 4. № 4. P. 609–622.
  2. Кейз К.М., Цвайфель П.Ф. Линейная теория переноса. М.: Мир, 1972. 384 с.
  3. Бжихатлов Х.Г. Об одной краевой задаче со смещением // Дифференц. ур-ния. 1973. Т. 9.№1. С. 162–165.
  4. Расламбеков С.Н. Сингулярное интегральное уравнение первого рода в исключительном случае в классах обобщенных функций // Изв. вузов. Математика. 1983.№10. С. 51–56.
  5. Габбасов Н.С. Методы решения интегральных уравнений Фредгольма в пространствах обобщенных функций. Казань: Изд-во Казанск. ун-та, 2006. 176 с.
  6. Замалиев Р.Р. О прямых методах решения интегральных уравнений третьего рода с особенностями в ядре: Дисс. . . .канд. физ.-матем. наук. Казань: КФУ, 2012. 114 с.
  7. Абдурахман. Интегральное уравнение третьего рода с особым дифференциальным оператором в главной части: Дисс. . . .канд. физ.-матем. наук. Ростов-на-Дону, 2003. 142 с.
  8. Габбасов Н.С. Об одном классе интегро-дифференциальных уравнений в особом случае // Дифференц. урния. 2021. Т. 57.№7. С. 889–899.
  9. Габбасов Н.С. Коллокационные методы для одного класса особых интегродифференциальных уравнений // Дифференц. ур-ния. 2022. Т. 58.№9. С. 1234–1241.
  10. Габбасов Н.С. К приближенному решению одного класса особых интегро-дифференциальных уравнений // Ж. вычисл. матем. и матем. физ. 2023. Т. 63.№2. С. 263–272.
  11. Габбасов Н.С. Специальный вариант метода коллокации для одного класса интегро-дифференциальных уравнений // Дифференц. ур-ния. 2023. Т. 59.№4. С. 512–519.
  12. Габдулхаев Б.Г. Оптимальные аппроксимации решений линейных задач. Казань: Изд-во Казанск. ун-та, 1980. 232 с.
  13. Пресдорф З. Сингулярное интегральное уравнение с символом, обращающимся в нуль в конечном числе точек // Матем. исследования. 1972. Т. 7.№1. C. 116–132.
  14. Габбасов Н.С. Теория разрешимости одного класса интегро-дифференциальных уравнений в пространстве обобщенных функций // Дифференц. ур-ния. 1999. Т. 35.№9. С. 1216–1226.
  15. Эдвардс Р. Функциональный анализ. М.: Мир, 1969. 1071 с.
  16. Габбасов Н.С. Прямые методы решения интегро-дифференциальных уравнений в особом случае // Дифференц. ур-ния. 2016. Т. 52.№7. С. 904–916.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).