Three-Dimensional Numerical Transfer Model Using a Monotonized Z-Scheme

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this work is to investigate a three-dimensional second-order monotone finite-difference scheme for the transport equation. The investigation is conducted for model three-dimensional transport equations of an incompressible medium. The properties of the three-dimensional extension of the Z-scheme with nonlinear correction are studied in this work. This study is an extension of the author’s previous works, where a nonlinear correction of one-dimensional transport equations was constructed. The proposed scheme uses “skew differences” containing values from different time layers instead of fluxes for the correction. The monotonicity of the obtained nonlinear scheme is numerically studied for a family of limiter functions for both smooth and non-smooth continuous solutions. The constructed scheme is absolutely stable but loses the monotonicity property when the Courant step is exceeded. The distinctive feature of the proposed finite-difference scheme is the minimalism of its template. The constructed numerical scheme is designed for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems that arise in solving such equations is the numerical modeling of strongly non-stationary medium- and small-scale processes in the low-latitude ionosphere of the Earth under conditions of the occurrence of the Rayleigh–Taylor instability and other types of instabilities, leading to the phenomenon of F‑scattering. Due to the fact that transport processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma is incompressible in the direction perpendicular to the magnetic field.

About the authors

N. M. Kashchenko

Immanuel Kant Baltic Federal University

Email: kaschtschenko@mail.ru
236016, Kaliningrad, Russia

S. A. Ishanov

Immanuel Kant Baltic Federal University

Email: SIshanov@kantiana.ru
236016, Kaliningrad, Russia

E. V. Zubkov

Immanuel Kant Baltic Federal University

Email: evgenyzubkov@mail.ru
236016, Kaliningrad, Russia

L. V. Zinin

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: leonid.zinin@gmail.com
236016, Kaliningrad, Russia

References


Copyright (c) 2023 N.M. Kashchenko, S.A. Ishanov, E.V. Zubkov, L.V. Zinin

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies