On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative experimental accuracy study of three shock-capturing schemes (the second-order CABARET, third-order Rusanov, and fifth-order in space third-order in time A-WENO schemes) is carried out by numerically solving a Cauchy problem with smooth periodic initial data for the Euler equations of gas dynamics. In the studied example, the solution breaks down and shock waves emerge. It is shown that the CABARET and A-WENO schemes, which are constructed using nonlinear limiters as a stabilization mechanism, have approximately the same accuracy in the areas of shock wave influence, while the nonmonotone Rusanov scheme has significantly higher accuracy in these areas despite producing noticeable nonphysical oscillations in the immediate vicinities of shock waves. At the same time, the combined scheme obtained based on the Rusanov and CABARET schemes localizes shock wave fronts, which are captured in a non-oscillatory manner, and preserves higher accuracy in the areas of the shock influence.

About the authors

V. A. Kolotilov

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: kolotilov1992@gmail.com
630090, Novosibirsk, Russia

A. A. Kurganov

Department of Mathematics, Southern University of Science and Technology; Shenzhen International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology

Email: alexander@sustech.edu.cn
518005, Shenzhen, China; 518005, Shenzhen, China

V. V. Ostapenko

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: ostapenko_vv@ngs.ru
630090, Novosibirsk, Russia

N. A. Khandeeva

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: nzyuzina1992@gmail.com
630090, Novosibirsk, Russia

S. Chu

Department of Mathematics, Southern University of Science and Technology

Author for correspondence.
Email: chuss2019@mail.sustech.edu.cn
518005, Shenzhen, China

References

  1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. № 3. С. 271–306.
  2. Cockburn B. An introduction to the discontinuous Galerkin method for convection – dominated problems // Lect. Notes Math. 1998. V. 1697. P. 150–268. https://doi.org/10.1007/BFb0096353
  3. Cockburn B., Shu C.-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems // J. Sci. Comput. 2001. V. 16. № 3. P. 173–261. http://doi.org/10.1023/A:1012873910884
  4. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.
  5. LeVeque R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1007/b79761
  6. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: Springer-Verlag, 2009. https://doi.org/10.1007/b79761
  7. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов // М.: Изд. МГУ, 2013.
  8. Hesthaven J.S. Numerical methods for conservation laws in V. 18 of Computational Science and Engineering. Philadelphia: SIAM, 2018. https://doi.org/10.1137/1.9781611975109
  9. Shu C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes // Acta Numer. 2020. V. 29. P. 701–762. https://doi.org/10.1017/S0962492920000057
  10. Van Leer B. Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s m-ethod // J. Comput. Phys. 1979. V. 32. № 1. P. 101–136. https://doi.org/10.1016/0021-9991(79)90145-1
  11. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
  12. Nessyahu H., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws // J. Comput. Phys. 1990. V. 87. № 2. P. 408–463. https://doi.org/10.1016/0021-9991(90)90260-8
  13. Liu X.-D., Osher T., Chan T. Weighted essentially non-oscillatory schemes // J. Comput. Phys. 1994. V. 115. № 1. P. 200–212. https://doi.org/10.1006/jcph.1994.1187
  14. Karabasov S.A., Goloviznin V.M. Compact accurately boundary-adjusting high-resolution technique for fluid dynamics // J. Comput. Phys. 2009. V. 228. P. 7426–7451. https://doi.org/10.1016/j.jcp.2009.06.037
  15. Стокер Дж.Дж. Волны на воде. Математическая теория и приложения. М.: Изд-во иностр. лит., 1959.
  16. Остапенко В.В. О построении разностных схем повышенной точности для сквозного расчета нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. № 12. С. 1857–1874.
  17. Ковыркина О.А., Остапенко В.В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. С. 517–522. https://doi.org/10.1134/S1064562418010246
  18. Зюзина Н.А., Ковыркина О.А., Остапенко В.В. Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2018. Т. 482. № 6. С. 639–643. https://doi.org/10.1134/S1064562418060315
  19. Ладонкина М.Е., Неклюдова О.А., Остапенко В.В., Тишкин В.Ф. Комбинированная схема разрывного метода Галеркина, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2019. Т. 489. № 2. С. 119–124. https://doi.org/10.1134/S106456241906005X
  20. Русанов В.В. Разностные схемы третьего порядка точности для сквозного счета разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. С. 1303–1305.
  21. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений. М.: Наука, 1978.
  22. Lax P.D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Philadelphia: Soc. Industr. Appl. Math. 1972. 48 p.
  23. Остапенко В.В., Колотилов В.А. Применение схемы CABARET для расчета разрывных решений гиперболической системы законов сохранения // Докл. АН. Матем., информ., проц. управл. 2021. Т. 501. С. 62–66. https://doi.org/10.1134/S1064562421060120
  24. Wang B.-S., Don W.S., Kurganov A., Liu Y. Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes // Commun. Appl. Math. Comput. 2021. https://doi.org/10.1007/s42967-021-00161-2
  25. Karni S., Kurganov A., Petrova G. A smoothness indicator for adaptive algorithms for hyperbolic systems // J. Comput. Phys. 2002. V. 178. P. 323–341. https://doi.org/10.1006/jcph.2002.7024

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (102KB)
3.

Download (94KB)
4.

Download (105KB)
5.

Download (100KB)

Copyright (c) 2023 В.А. Колотилов, А.А. Курганов, В.В. Остапенко, Н.А. Хандеева, Ш. Чу

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies