Numerical Algorithm for Source Determination in a Diffusion–Logistic Model from Integral Data Based on Tensor Optimization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An algorithm has been developed for numerically solving the source determination problem in the model of information dissemination in synthetic online social networks, described by reaction–diffusion-type equations, using additional information about the process at fixed time points. The degree of ill-posedness of the source determination problem for a parabolic equation is studied based on the analysis of singular values of the linearized operator of the inverse problem. The algorithm developed is based on a combination of the tensor optimization method and gradient descent supplemented with the A.N. Tikhonov regularization. Numerical calculations demonstrate the smallest relative error in the reconstructed source obtained by the developed algorithm in comparison with classical approaches.

作者简介

T. Zvonareva

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: krivorotko.olya@mail.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

S. Kabanikhin

Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Email: krivorotko.olya@mail.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

O. Krivorotko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences Novosibirsk State University; Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: krivorotko.olya@mail.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

参考

  1. Четверушкин Б.Н., Осипов В.П., Балута В.И. Подходы к моделированию последствий принятия решений в условиях противодействия // Препринт ИПМ им. М.В. Келдыша. 2018. № 43. 15 с.
  2. Wang F., Wang H., Xu K., Wu J., Jia X. Characterizing Information Diffusion in Online Social Networks with Linear Diffusive Model // Proceed. of ICDCS. 2013. P. 307–316.
  3. Колмогоров А.Н., Петровский И.Г., Пискунов Н.С. Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме // Бюлл. МГУ. Сер. А. Математика и механика. 1937. Т. 1. № 6. С. 1–26.
  4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
  5. Самохвалов Д.И. Определение аккаунтов злоумышленников в социальной сети ВКонтакте при помощи методов машинного обучения // Тр. Института системного программирования РАН. 2020. Т. 32. № 3. С. 109–117.
  6. Kabanikhin S. Definitions and examples of inverse and ill-posed problems // J. Inverse Ill-Posed Probl. 2009. V. 16. № 4. P. 317–357.
  7. Бухгейм А.Л., Клибанов М.В. Единственность в целом одного класса многомерных обратных задач // Докл. АН СССР. 1981. Т. 260. № 2. С. 269–272.
  8. Yamamoto M., Zou J. Simultaneous reconstruction of the initial temperature and heat radiative coefficient // Inverse Problems. 2001. V. 17. P. 1181.
  9. Bellassoued M., Yamamoto M. Inverse source problem for a transmission problem for a parabolic equation // J. Inverse Ill-Posed Probl. 2006. V. 14(1). P. 47–56.
  10. Cristofol M., Garnier J., Hamel F., Roques L. Uniqueness from pointwise observations in a multi-parameter inverse problem // Commun. Pure and Appl. Analys. 2012. V. 11(1). P. 173–188.
  11. Isakov V. Inverse Problems for Partial Differential Equations. New York: Springer, 2017.
  12. Hasanov A. Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach // J. Math. Analys. Appl. 2007. V. 330. Iss. 2. P. 766–779.
  13. Penenko A., Mukatova Z. Inverse modeling of diffusion-reaction processes with image-type measurement data // 2018 11th Inter. Multiconference Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB). 2018. P. 39–43.
  14. Kaltenbacher B., Rundell W. The inverse problem of reconstructing reaction–diffusion systems // Inverse Problems. 2020. V. 36. P. 065011.
  15. Моисеев Т.Е., Мышецкая Е.Е., Тишкин В.Ф. О близости решений невозмущенных гиперболизированных уравнений теплопроводности для разрывных начальных данных // Докл. АН. Математика. 2018. Т. 481. № 6. С. 605–609.
  16. Четверушкин Б.Н., Ольховская О.Г. Моделирование процесса лучистой теплопроводности на высокопроизводительных вычислительных системах // Докл. АН. Математика, информатика, процессы управления. 2020. Т. 491. № 1. С. 111–114.
  17. Тихонов А.Н. Об устойчивости обратных задач // Докл. АН СССР. 1943. Т. 39. № 5. С. 195–198.
  18. Тихонов А.Н. О зависимости решений дифференциальных уравнений от малого параметра // Матем. сб. 1948. Т. 22(64). № 2. С. 193–204.
  19. Krivorotko O., Zvonareva T., Zyatkov N. Numerical solution of the inverse problem for diffusion-logistic model arising in online social networks // Commun. Comput. Info. Sci. 2021. V. 1476. P. 444–459.
  20. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Регуляризирующие алгоритмы и априорная информация. М.: Наука, 1983.
  21. Zheltkova V.V., Zheltkov D.A., Grossman Z., Bocharov G.A., Tyrtyshnikov E.E. Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology // J. Inverse Ill-Posed Probl. 2018. V. 26. № 1. P. 51–66.
  22. Oseledets I.V., Tyrtyshnikov E.E. TT-cross approximation for multidimensional arrays // Linear Algebra Appl. 2010. V. 432. № 1. P. 70–88.
  23. Goreinov S.A., Oseledets I.V., Savostyanov D.V., Tyrtyshnikov E.E., Zamarashkin N.L. How to Find a Good Submatrix // Matrix Methods: Theory, Algorithms and Appl. 2010. P. 247–256.
  24. Mikhalev A., Oseledets I. Rectangular maximum-volume submatrices and their applications // Linear Algebra Appl. 2018. V. 538. P. 187–211.
  25. Gasnikov A.V., Nesterov Y.E. Universal method for stochastic composite optimization problems // Comput. Math. Math. Phys. 2018. V. 58. № 1. P. 48–64.
  26. Звонарева Т.A., Криворотько О.И. Сравнительный анализ градиентных методов определения источника диффузионно-логистической модели // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 4. С. 694–704.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (40KB)
3.

下载 (67KB)
4.

下载 (36KB)
5.

下载 (41KB)

版权所有 © Т.А. Звонарева, С.И. Кабанихин, О.И. Криворотько, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».