Analysis of Numerical Differential Formulas on a Bakhvalov Mesh in the Presence of a Boundary Layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers numerical differentiation of functions with large gradients in the region of an exponential boundary layer. This topic is important, since the application of classical polynomial difference formulas for derivatives to such functions in the case of a uniform mesh leads to unacceptable errors if the perturbation parameter  is comparable with the mesh size. The numerical differentiation formula with a given number of nodes in the difference stencil is built on subintervals covering the original interval. The accuracy of numerical differentiation formulas on a Bakhvalov mesh, which is widely used in the construction of difference schemes for singularly perturbed problems, is analyzed. For the original function of one variable, a representation in the form of a sum of regular and boundary-layer components, based on the Shishkin decomposition, is used to solve a singularly perturbed problem. Previously, such a decomposition was used to prove the convergence of difference schemes. An estimate of the error of classical polynomial formulas for numerical differentiation on a Bakhvalov mesh is obtained. The error estimate on a Bakhvalov mesh is obtained in the general case, when a derivative of an arbitrarily given order is calculated and the difference stencil for this derivative contains a given number of nodes. The error estimate depends on the order of the calculated derivative and the number of nodes in difference stencil and takes into account the uniformity in the parameter . The results of numerical experiments are presented, which are consistent with the error estimates obtained.

About the authors

A. I. Zadorin

Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: zadorin@ofim.oscsbras.ru
630090, Novosibirsk, Russia

References

  1. Ильин А.М. Разностная схема для дифференциального уравнения с малым параметром при старшей производной // Матем. заметки. 1969. Т. 6. № 2. С. 237–248.
  2. Бахвалов Н.С. К оптимизации методов решения краевых задач при наличии пограничного слоя // Ж. вычисл. матем. и матем. физ. 1969. Т. 9. № 4. С. 841–890.
  3. Шишкин Г.И. Сеточные аппроксимации сингулярно возмущенных эллиптических и параболических уравнений. Екатеринбург: УрО РАН, 1992.
  4. Miller J.J.H., O’Riordan E., Shishkin G.I. Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. Singapore: World Sci. Publ., 2012.
  5. Задорин А.И., Задорин Н.А. Сплайн-интерполяция на равномерной сетке функции с погранслойной составляющей // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 2. С. 221–233.
  6. Zadorin A.I., Zadorin N.A. Interpolation formula for functions with a boundary layer component and its application to derivatives calculation // Sib. Electron. Math. Rep. 2012. V. 9. P. 445–455.
  7. Zadorin A., Tikhovskaya S. Formulas of numerical differentiation on a uniform mesh for functions with the exponential boundary layer // Internat. J. Numer. Anal. Model. 2019. V. 16. № 4. P. 590–608.
  8. Il’in V.P., Zadorin A.I. Adaptive formulas of numerical differentiation of functions with large gradients // J. Phys.: Conf. Ser. 2019. V. 1260. 042003.
  9. Kopteva N.V., Stynes M. Approximation of derivatives in a convection-diffusion two-point boundary value problem // Appl. Numer. Math. 2001. V. 39. P. 47–60.
  10. Shishkin G.I. Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations // Math. Proc. Royal Irish Acad. 2003. V. 103A. № 4. P. 169–201.
  11. Задорин А.И. Анализ формул численного дифференцирования на сетке Шишкина при наличии пограничного слоя // Сиб. журн. вычисл. матем. 2018. Т. 21. № 3. С. 243–254.
  12. Linβ T. The Necessity of Shishkin Decompositions // Appl. Math. Lett. 2001. V. 14. P. 891–896.
  13. Zadorin N.A. Numerical differentiation on the Bakhvalov mesh in the presence of an exponential boundary layer // J. Phys.: Conf. Ser. 2020. V. 1546. 012108.
  14. Блатов И.А., Задорин Н.А. Интерполяция на сетке Бахвалова при наличии экспоненциального пограничного слоя // Уч. зап. Казанского ун-та. Физ.-матем. науки. 2019. Т. 161. Кн. 4. С. 497–508.
  15. Roos H.G. Layer-adapted meshes: milestones in 50 years of history // Appl. Math. arXiv:1909.08273v1, 2019.
  16. Бахвалов Н.С. Численные методы. М.: Наука, 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.И. Задорин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».