Learning port-Hamiltonian Systems—Algorithms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this article we study the possibilities of recovering the structure of port-Hamiltonian systems starting from “unlabelled” ordinary differential equations describing mechanical systems. The algorithm we suggest solves the problem in two phases. It starts by constructing the connectivity structure of the system using machine learning methods – producing thus a graph of interconnected subsystems. Then this graph is enhanced by recovering the Hamiltonian structure of each subsystem as well as the corresponding ports. This second phase relies heavily on results from symplectic and Poisson geometry that we briefly sketch. And the precise solutions can be constructed using methods of computer algebra and symbolic computations. The algorithm permits to extend the port-Hamiltonian formalism to generic ordinary differential equations, hence introducing eventually a new concept of normal forms of ODEs.

About the authors

D. Lozienko

LaSIE–CNRS & La Rochelle University

Email: daria.loziienko1@univ-lr.fr
17042, La Rochelle Cedex 1, France

V. Salnikov

LaSIE–CNRS & La Rochelle University

Email: vladimir.salnikov@univ-lr.fr
17042, La Rochelle Cedex 1, France

A. Falaize

LaSIE–CNRS & La Rochelle University

Author for correspondence.
Email: antoine.falaize@univ-lr.fr
17042, La Rochelle Cedex 1, France

References

  1. Salnikov V., Hamdouni A., Loziienko D. Generalized and graded geometry for mechanics: a comprehensive introduction // Math. and Mech. of Complex Syst. 2021. V. 9. № 1. P. 59–75.
  2. Verlet L. Computer “Experiments” on Classical Fluids // Phys. Rev. 1967. V. 159. P. 98–103.
  3. Yoshida H. Construction of higher order symplectic integrators // Phys. Lett. A. 1990. V. 150. № 5–7. P. 262–268.
  4. Cosserat O. Symplectic groupoids for Poisson integrators, Preprint: arXiv:2205.04838.
  5. Paynter H.M. Analysis and Design of Engineering Systems, MIT Press, Cambridge, Massachusetts, 1961.
  6. Maschke B.M., van der Schaft A.J., Breedveld P.C. An intrinsic Hamiltonian formulation of network dynamics: nonstandard Poisson structures and gyrators // J. Franklin Inst. 1992. V. 329. № 5. P. 923–966.
  7. van der Schaft A. Port-Hamiltonian systems: an introductory survey // Proceed. of the Inter. Congress of Math. 2006. V. III. P. 1339–1365, Madrid.
  8. Cosserat O., Laurent-Gengoux C., Kotov A., Ryvkin L., Salnikov V. On Dirac structures admitting a variational approach, Preprint: arXiv:2109.00313.
  9. Falaize A. Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation hamiltonienne à ports, PhD thesis, Télécomm. et Électronique de Paris, Université Pierre et Marie Curie, 2016.
  10. Сальников В.Н., Хамдуни А. Дифференциальная геометрия и механика – источник задач для компьютерной алгебры // Программирование. 2020. № 2. С. 60–66.
  11. Salnikov V., Falaize A., Loziienko D. Learning port-Hamiltonian systems – applications, готовится к печати.
  12. Арнольд В.И. Математические методы классической механики. М.: Наука, 1974.
  13. Cannas Da Silva A., Weinstein A. Geometric Models for Noncommutative Algebras, Am. Math. Soc. 2000.
  14. Falaize A., Hélie T. Passive guaranteed simulation of analog audio circuits: A port-hamiltonian approach // Applied Science, Applied Acoustics, special issue Audio Signal Process. 2016. V. 6. P. 273.
  15. Falaize A., Hélie T. Passive simulation of the nonlinear port-hamiltonian modeling of a rhodes piano // J. of Sound and Vibrat. 2016. V. 390. P. 289–309.
  16. Evripidou C.A., Kassotakis P., Vanhaecke P. Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems // J. of Regular and Chaotic Dynam. 2017. V. 22 P. 721–739.
  17. Leclercq T., de Langre E. Vortex-induced vibrations of cylinders bent by the flow // J. of Fluids and Structur. 2018. V. 80. P. 77–93.
  18. Salnikov V., Hamdouni A. Geometric integrators in mechanics – the need for computer algebra tools // Proceed. of the Third Inter. Conf. “Computer algebra”, 40–46, 2019, Moscow, Russia.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (76KB)

Copyright (c) 2023 Д. Лозиенко, В. Сальников, А. Фалез

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».