Analytical Study of Cubature Formulas on a Sphere in Computer Algebra Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of finding the weights and nodes of cubature formulas of a given order on a unit sphere that are invariant under the icosahedral rotation groups (A.S. Popov’s problem) is studied analytically in computer algebra systems. Popov’s algorithm for reducing the problem to a system of nonlinear equations is implemented in the Sage computer algebra system. It is shown that, in Sage, difficulties with studying the resulting system of nonlinear algebraic equations arise starting from the order of approximation of 23. It is also shown that Popov’s problem of this order leads to a polynomial ideal whose Gröbner basis contains polynomials with extremely large integer coefficients, which makes it quite difficult to explore with the standard tools implemented in Sage. This basis was found in our computer algebra system GInv, the new version of which was made public by one of the authors of this article in 2021. This made it possible to fully describe the set of solutions of Popov’s problem in Sage. The exact solutions found in the article are compared with the solutions found numerically by Popov. The potential of using Popov’s problem as a test problem for systems specializing in computing the Gröbner basis is discussed.

About the authors

R. E. Bayramov

RUDN University

Email: malykh_md@pfur.ru
117198, Moscow, Russia

Yu. A. Blinkov

RUDN University; Saratov State University

Email: malykh_md@pfur.ru
117198, Moscow, Russia; 410012, Saratov, Russia

I. V. Levichev

RUDN University

Email: malykh_md@pfur.ru
117198, Moscow, Russia

M. D. Malykh

RUDN University; Joint Institute for Nuclear Research

Email: malykh_md@pfur.ru
117198, Moscow, Russia; 141980, Dubna, Moscow oblast, Russia

V. S. Melezhik

Joint Institute for Nuclear Research

Author for correspondence.
Email: malykh_md@pfur.ru
141980, Dubna, Moscow oblast, Russia

References

  1. Popov A.S. The search for the sphere of the best cubature formulae invariant under octahedral group of rotations // Siberian J. of Numer. Math. / Sib. Branch of Russ. Acad. of Sci. 2002. V. 5. № 4. P. 367–0372.
  2. Popov A.S. The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere // Siberian J. of Numer. Math. / Sib. Branch of Russ. Acad. of Sci. 2005. V. 8. № 2. P. 143–148.
  3. Popov A.S. Cubature formulas on a sphere invariant under the icosahedral rotation group // Numer. Analys. A-ppl. 2008. V. 1. P. 355–361.
  4. Popov A.S. Cubature Formulas Invariant under the Icosahedral Group of Rotations with Inversion on a Sphere // Numer. Analys. Appl. 2017. V. 10. P. 339–346.
  5. Popov A.S. Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons // Siberian Electron. Math. Rep. 2017. V. 14. P. 190–198.
  6. Gräf M., Potts D. Sampling sets and quadrature formulae on the rotation group // Numer. Funct. Anal. and Optimizat. 2009. V. 30. № 7–8. P. 665–688.
  7. Gräf M., Kunis St., Potts D. On the computation of nonnegative quadrature weights on the sphere // Appl. and Comput. Harmonic Anal. 2009. V. 27. № 1. P. 124–132.
  8. Gräf M. Efficient Algorithms for the computation of Optimal Quadrature Points on Riemannian Manifolds : Ph. D. thesis / Manuel Gräf; Fakultät für Mathematik der Technischen Universität Chemnitz. Chemnitz, 2013. P. 2.
  9. Melezhik V.S. New method for solving multidimensional scattering problem // J. of Comput. Phys. 1991. V. 92. № 1. P. 67–81. Access mode: https://www.sciencedirect.com/science/article/pii/002199919190292S.
  10. Shadmehri S., Saeidian Sh., Melezhik V.S. 2D nondirect product discrete variable representation for Schrödinger equation with nonseparable angular variables // J. of Phys. B: Atomic, Molecular and Optic. Phys. 2020. V. 53. № 8. P. 085001.
  11. Melezhik V.S. Improving efficiency of sympathetic cooling in atom- ion and atom-atom confined collisions // Phys. Rev. A. 2021. May. V. 103. P. 053109. Access mode: https://link.aps.org/doi/10.1103/PhysRevA.103.053109.
  12. Cox D., Little J., O’Shea D. Ideals, varieties, and algorithms. 3 ed. Springer, 2007.
  13. Zharkov A.Yu., Blinkov Yu.A. Involution approach to solving systems of algebraic equations // Proceed. of the 1993 Inter. IMACS Symp. on Symbolic Comput. Laboratoire d’Informatique Fondamentale de Lille, France, 1993. P. 11–16.
  14. Zharkov A.Yu., Blinkov Yu.A. Solving zero-dimensional involutive systems // Progress in Math. Basel: Birkhauser, 1996. V. 143. P. 389–399.
  15. Blinkov Yu.A. Division and algorithms in the ideal membership problem [Deleniye i algoritmy v zadache o prinadlezhnosti k idealu] // Izvestija Saratovskogo universiteta. 2001. V. 1. № 2. P. 156–167. In Russ.
  16. Apel J. A Gröbner approach to involutive bases // J. of Symbolic Comput. 1995. V. 19. № 5. P. 441–458.
  17. McCarthy J. Recursive functions of symbolic expressions and their computation by machine, Part I // Communicat. of ACM. 1960. V. 3. № 4. P. 184–195.
  18. Jones R., Hosking A., Moss J., Eliot B. The garbage collection handbook: the a of automatic memory management. CRC Applied Algorithms and Data Structures Ser. Chapman and Hall / CRC Press / Taylor & Francis Ltd., 2011. ISBN: 978-1-4200-8279-1.
  19. Клейн Ф. Лекции об икосаэдре и решении уравнений пятой степени. M.: Наука, 1989.

Copyright (c) 2023 Р.Э. Байрамов, Ю.А. Блинков, И.В. Левичев, М.Д. Малых, В.С. Мележик

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies