Палладий, нанесенный на гидротермально модифицированный оксид алюминия: физико-химические и каталитические свойства

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Синтезирован палладиевый катализатор корочкового типа с иcпользованием в качестве носителя гидротермально модифицированного гранулированного оксида алюминия. Катализатор охарактеризован следующими методами: механическая прочность гранул на раздавливание, низкотемпературная адсорбция–десорбция азота, атомно-эмиссионная спектроскопия, конфокальная лазерная сканирующая микроскопия, энергодисперсионная спектроскопия, термопрограммируемое восстановление водородом. Проведена оценка активности катализатора в реакциях гидрирования двойной связи моноолефинов (этилен, гексен-1, α-метилстирол) в интервале температур 28–270°С, гидрирования ароматического кольца (α-метилстирол) в интервале температур 170–270°С, дегидратации третичного спирта (трет-бутанол) в интервале температур 100–200°С. Установлено наличие у катализатора бифункциональной активности: гидрирующей и дегидратирующей.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Дамир Ягудин

Казанский национальный исследовательский технологический университет

Хат алмасуға жауапты Автор.
Email: karalin@yandex.ru
ORCID iD: 0009-0001-7591-8540
Ресей, 420015, Республика Татарстан, г. Казань, ул. К. Маркса, д. 68

Эрнест Каралин

Казанский национальный исследовательский технологический университет

Email: karalin@yandex.ru
ORCID iD: 0000-0002-4718-8608

д.т.н.

Ресей, 420015, Республика Татарстан, г. Казань, ул. К. Маркса, д. 68

Максим Бочков

Казанский национальный исследовательский технологический университет

Email: karalin@yandex.ru
ORCID iD: 0009-0000-6433-3566
Ресей, 420015, Республика Татарстан, г. Казань, ул. К. Маркса, д. 68

Галина Елиманова

Казанский национальный исследовательский технологический университет

Email: karalin@yandex.ru
ORCID iD: 0000-0002-0328-8164

к.х.н.

Ресей, 420015, Республика Татарстан, г. Казань, ул. К. Маркса, д. 68

Харлампий Харлампиди

Казанский национальный исследовательский технологический университет

Email: karalin@yandex.ru
ORCID iD: 0000-0003-3157-873X

д.х.н.

Ресей, 420015, Республика Татарстан, г. Казань, ул. К. Маркса, д. 68

Әдебиет тізімі

  1. Kwak B.-S., Kim T.-J., Lee S.-I. Hydrogenolysis of α-methylbenzyl alcohol over bifunctional catalysts // Appl. Catal. A. 2003. V. 238. P. 141–148. https://doi.org/10.1016/S0926-860X(02)00347-2
  2. Опаркин А. В., Каралин Э. А., Муртазин Н. Ф., Харлампиди Х. Э. Переработка диметилфенилкарбинола в рамках технологии CHPO // Вестн. Технол. ун-та. 2015. Т. 18. № 10. С. 118–120. https://www.elibrary.ru/ucbpgp
  3. Ягудин Д. И., Каралин Э. А., Елкин Н. С., Бочков М. А., Елиманова Г. Г., Харлампиди Х. Э. Возможные направления образования побочных продуктов на стадии эпоксидирования в кумольной технологии получения оксида пропилена // Вестн. Технол. ун-та. 2023. Т. 26. № 12. С. 78–84. https://www.elibrary.ru/ornbbq
  4. Альмяшева О. В., Корыткова Э. Н., Маслов А. В., Гусаров В. В. Получение нанокристаллов оксида алюминия в гидротермальных условиях // Неорган. материалы. 2005. Т. 41. № 5. С. 540–547. https://www.elibrary.ru/hshfnt [Alʹmyasheva O. V., Korytkova E. N., Maslov A. V., Gusarov V. V. Preparation of nanocrystalline alumina under hydrothermal conditions // Inorg. Mater. 2005. V. 41. N 5. P. 460–467. https://doi.org/10.1007/s10789-005-0152-7].
  5. Mironenko R. M., Belskaya O. B., Talsi V. P., Gulyaeva T. I., Kazakov M. O., Nizovskii A. I., Kalinkin A. V., Bukhtiyarov V. I., Lavrenov A. V., Likholobov V. A. Effect of γ-Al2O3 hydrothermal treatment on the formation and properties of platinum sites in Pt/γ-Al2O3 catalysts // Appl. Catal. A. 2014. V. 469. P. 472–482. https://doi.org/10.1016/j.apcata.2013.10.027
  6. Jiajie H., Jean-Philippe T., Brent H. S. Improving hydrothermal stability of supported metal catalysts for biomass conversions: A review // ACS Catal. 2021. V. 11. N 9. P. 5248–5270. https://doi.org/10.1021/acscatal.1c00197
  7. Пат. РФ 2705589 (опубл. 2019). Способ получения катализатора для жидкофазного гидрирования смесей, содержащих карбонильные и гидроксильные производные ароматических углеводородов.
  8. Пат. РФ 2817112 (опубл. 2024). Способ получения носителя на основе оксида алюминия с регулируемой удельной поверхностью.
  9. Столяров И. П., Демина Л. И., Черкашина Н. В. Препаративный синтез ацетата палладия(II): реакции, промежуточные и побочные продукты // Журн. неорган. химии. 2011. Т. 56. № 10. С. 1611–1616. https://www.elibrary.ru/ofrlhp [Stolyarov I. P., Demina L. I., Cherkashina N. V. Preparative synthesis of palladium(II) acetate: Reactions, intermediates, and by-products // Russ. J. Inorg. Chem. 2011. V. 56. N 10. P. 1532–1537. https://doi.org/10.1134/S003602361110024X].
  10. Васильев В. А., Каралин Э. А., Галямова К. Н., Опаркин А. В., Гарифуллин А. Р. Изменение механической прочности алюмооксидного катализатора дегидратации 1-фенилэтанола в условиях промышленного процесса // Вестн. Технол. ун-та. 2015. Т. 18. № 4. С. 115–116. https://www.elibrary.ru/tmyyhd
  11. Бурганов Б. Т., Каралин Э. А., Васильев В. А., Харлампиди Х. Э. Катализатор селективного гидрирования ацетилена на основе оксида алюминия А-64 // Вестн. Казан. технол. ун-та. 2014. Т. 17. № 23. С. 53–55. https://www.elibrary.ru/tccvup
  12. Васильев В. А., Михтахов И. С., Опаркин А. В., Каралин Э. А. Исследование поверхности гетерогенных катализаторов методом конфокальной оптической микроскопии // Вестн. Технол. ун-та. 2015. Т. 18. № 10. С. 95–97. https://www.elibrary.ru/ucbpdn
  13. Zhuang Y. Q., Claeys M., van Steen E. Novel synthesis route for egg-shell, egg-white and egg-yolk type of cobalt on silica catalysts // Appl. Catal. A. 2006. V. 301. P. 138–142. https://doi.org/10.1016/j.apcata.2005.11.029
  14. Laskin A., Ilʹyasov I., Lamberov A. Transformation of the active component during oxidative and reductive activation of the palladium hydrogenation catalyst // New J. Chem. 2020. V. 44. P. 1719–1732. https://doi.org/10.1039/C9NJ05578A
  15. Liu R.-J., Crozier P. A., Smith C. M., Hucul D. A., Blackson J., Salaita G. Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts // Appl. Catal. A. 2005. V. 282. P. 111–121. https://doi.org/10.1016/j.apcata.2004.12.015
  16. Мулагалеев Р. Ф., Кирик С. Д., Головнёв Н. Н. Ацетаты палладия: молекулярная схема взаимного превращения // Журн. Сиб. Федер. ун-та. Химия. 2008. Т. 1. № 3. С. 249–259. https://www.elibrary.ru/jvyazf
  17. Лыу Кам Л., Нгуен Т., Дао Ти Ким Т., Гайдай Н. А., Агафонов Ю. А., Ха Кам А., Хоанг Тиен К., Лапидус А. Л. Кинетика изомеризации н-гексана на нанесенных палладиевых катализаторах // Кинетика и катализ. 2017. Т. 58. № 3. С. 327–337. https://doi.org/10.7868/80453881117030108 https://www.elibrary.ru/yspkcz [Luu Cam L., Nguyen T., Dao Thi Kim T. Gaidai N. A., Agafonov Yu. A., Ha Cam A., Hoang Tien C., Lapidus A. L. Kinetics of n-hexane isomerization over supported palladium catalysts // Kinet. Catal. 2017. V. 58. N 3. P. 311–320. https://doi.org/10.1134/S0023158417030090].
  18. Каралин Э. А., Васильев В. А., Малямов А. С., Опаркин А. В. Межмолекулярная каталитическая дегидратация изомерных фенилэтанолов в газовой фазе // Вестн. Технол. ун-та. 2016. Т. 19. № 17. С. 23–24. https://www.elibrary.ru/wxbugr
  19. Ravenelle R. M., Copeland J. R., Kim W. G., Crittenden J. C., Sievers C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water // ACS Catal. 2011. V. 1. N 5. P. 552–561. https://doi.org/10.1021/cs1001515
  20. Пат. РФ 2236437 (опубл. 2004). Способ каталитической гидрогенизационной обработки легкой фракции пиролизной смолы.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Nitrogen adsorption–desorption isotherms of Al2O3 and hydrothermally modified Al2O3.

Жүктеу (74KB)
3. Fig. 2. Distribution of micropore volume by pore size of hydrothermally modified Al2O3 and catalyst (Pd supported on hydrothermally modified Al2O3).

Жүктеу (67KB)
4. Fig. 3. Penetration depth of the catalytically active component into the catalyst granule (Pd supported on hydrothermally modified Al2O3).

Жүктеу (157KB)
5. Fig. 4. Local concentration of Pd across the cross-section of a catalyst granule (Pd deposited on hydrothermally modified Al2O3).

Жүктеу (118KB)
6. Fig. 5. Profile of temperature-programmed hydrogen reduction of the catalyst (Pd supported on hydrothermally modified Al2O3).

Жүктеу (62KB)
7. Fig. 6. Temperature dependence of the equilibrium constant (1) and the concentration of isopropylcyclohexane (2).

Жүктеу (70KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>