Получение и свойства макромолекулярных пористых структур на основе линейного и сшитого альгината натрия
- Авторлар: Kurmaz S.V.1, Barannikova L.V.1,2, Lesnichaya V.A.1, Chernyaev D.A.1, Belozerskaya G.G.3
-
Мекемелер:
- Federal Research Center for Chemical Physics and Medical Chemistry RAS
- A. N. Nesmeyanov Institute of Element-Organic Chemistry RAS
- National Medical Research Center of Hematology of the Ministry of Health of the Russian Federation
- Шығарылым: Том 98, № 9-10 (2025)
- Беттер: 484-495
- Бөлім: Высокомолекулярные соединения и материалы на их основе
- URL: https://journals.rcsi.science/0044-4618/article/view/352878
- DOI: https://doi.org/10.31857/S0044461825080028
- ID: 352878
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
S. Kurmaz
Federal Research Center for Chemical Physics and Medical Chemistry RAS
Email: skurmaz@icp.ac.ru
142432, Moscow Region, Chernogolovka, Akademika Semenova Ave., 1
L. Barannikova
Federal Research Center for Chemical Physics and Medical Chemistry RAS; A. N. Nesmeyanov Institute of Element-Organic Chemistry RAS142432, Moscow Region, Chernogolovka, Akademika Semenova Ave., 1; 119334, Moscow, Vavilova St., 28, bld. 1
V. Lesnichaya
Federal Research Center for Chemical Physics and Medical Chemistry RAS142432, Moscow Region, Chernogolovka, Akademika Semenova Ave., 1
D. Chernyaev
Federal Research Center for Chemical Physics and Medical Chemistry RAS142432, Moscow Region, Chernogolovka, Akademika Semenova Ave., 1
G. Belozerskaya
National Medical Research Center of Hematology of the Ministry of Health of the Russian Federation125167, Moscow, Novy Zyikovsky Passage, 4
Әдебиет тізімі
- Lee K. Y., Mooney D. J. Alginate: Properties and biomedical applications // Progress Polym. Sci. 2012. V. 37. N 1. P. 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
- Guo X., Wang Y., Qin Y., Shen P., Peng Q. Structures, properties and application of alginic acid: A review // Int. J. Biol. Macromol. 2020. V. 162. P. 618–628. https://doi.org/10.1016/j.ijbiomac.2020.06.180
- Sellimi S., Younes I., Ayed H.B., Maalej H., Montero V., Rinaudo M., Dahia M., Mechichi T., Hajji M., Nasri M. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed // Int. J. Biol. Macromol. 2015. V. 72. P. 1358–1367. 10.1016/j.ijbiomac.2014.10.016' target='_blank'>http://dx.doi.org/doi: 10.1016/j.ijbiomac.2014.10.016
- Szekalska M., Puciłowska A., Szymańska E., Ciosek P., Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications // Int. J. Polym. Sci. 2016. 7697031. http://dx.doi.org/10.1155/2016/7697031
- Varaprasad K., Jayaramudu T., Kanikireddy V., Toro C., Sadiku E. R. Alginate-based composite materials for wound dressing application: A mini review // Carbohydrate Polym. 2020. V. 236. 116025. https://doi.org/10.1016/j.carbpol.2020.116025
- Cui R., Zhang L., Ou R., Xu Y., Xu L., Zhan X.Y., Li D. Polysaccharide-based hydrogels for wound dressing: Design considerations and clinical applications // Front Bioeng. Biotechnol. 2022. V. 10. 845735. https://doi.org/10.3389/fbioe.2022.845735
- Sohn E. J., Ahn H. B., Roh M. S., Ryu W. Y., Kwon Y. H. Efficacy of temperature-sensitive guardix-SG for adhesiolysis in experimentally induced eyelid adhesion in rabbits // Ophthalmic Plastic & Reconstructive Surgery. 2013. V. 29. N 6. P. 458–463. https://doi.org/10.1097/IOP.0b013e3182a22bae
- Krasnopeeva E. L., Panova G. G., Yakimansky A. V. Agricultural applications of superabsorbent polymer hydrogels // Int. J. Mol. Sci. 2022. V. 23. N 23. 15134. https://doi.org/10.3390/ijms232315134
- Ji-Sheng Y., Ying-Jian X., Wen H. Research progress on chemical modification of alginate: A review //Carbohydrate Polym. 2011. V. 84. P. 33–39. 10.1016/j.carbpol.2010.11.048' target='_blank'>https://doi: 10.1016/j.carbpol.2010.11.048
- Rowbotham J. S., Greenwell H. C., Dyer P. W. Opening the Egg Box: NMR spectroscopic analysis of the interactions between s-block cations and kelp monosaccharides // Dalton Trans. 2003. 2021. V. 50. N 38. P. 13246–13255. https://doi.org/10.1039/d0dt04375c
- Voropaiev M., Nock D. Onset of acid-neutralizing action of a calcium/magnesium carbonate-based antacid using an artificial stomach model: An in vitro evaluation // BMC Gastroenterol. BioMed Central, 2021. V. 21. N 1. 112. https://doi.org/10.1186/s12876-021-01687-8
- Tardivo J. P., Del Giglio A., de Oliveira C. S., Gabrielli D. S., Junqueira H. C., Tada D. B., Severino D., Turchiello R. de F., Baptista M. S. Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications // Photodiagnosis and Photodynamic Therapy. 2005. V. 2. N 3. P. 175–191. https://doi.org/10.1016/S1572-1000(05)00097-9
- Er Karaoğlu G., Uğurydın Z., Erdönmez D., Göl C., Durmuş M. Efficacy of antimicrobial photodynamic therapy administered using methylene blue, toluidine blue and tetra 2-mercaptopyridine substituted zinc phthalocyanine in root canals contaminated with Enterococcusaecalis // Photodiagnosis and Photodynamic Therapy. 2020. V. 32. 102038. https://doi.org/10.1016/j.pdpdt.2020.102038
- Lotufo M. A., Tempestini Horliana A. C. R., Santana T., de Queiroz A. C., Gomes A. O., Motta L. J., Ferrari R. A. M., dos Santos Fernandes K. P., Bussadori S. K. Efficacy of photodynamic therapy on the treatment of herpes labialis: A systematic review // Photodiagnosis and Photodynamic Therapy. 2020. V. 29. 101536. https://doi.org/10.1016/j.pdpdt.2019.08.018
- Кокшаров С. А. Алеева С. В., Лепилова О. В., Кричевский Г. Е., Фидоровская Ю. С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоид. журн. 2021. Т. 83. № 6. С. 660–675. https://doi.org/10.31857/S0023291221060070
- Бычичко Д. Ю. Разработка гемостатических покрытий локального действия на основе натуральных полисахаридов: альгината натрия и каппа-каррагинана (экспериментальное исследование): специальность 14.03.06 «Фармакология, клиническая фармакология»: Диссертация на соискание уч. ст. канд. мед. наук. М., 2022. 186 с.
- Lin N., Bruzzese C., Dufresne A. Ttmpo-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges // ACS Appl. Mater. Interfaces. 2012. V. 4. N 4. P. 4948–4959. https://dx.doi.org/10.1021/am301325r
- Kurmaz S. V., Fadeeva N. V., Gorshkova A. I., Kurochkin S. A., Knerelman E. I., Davydova G. I., Torbov V. I., Dremova N. N., Konev D. V., Kurmaz V. A., Ignatiev V. M., Emelyanova N. S. Mesoporous networks of N-vinylpyrrolidone with (di)methacrylates as precursors of ecological molecular imprinted polymers // Materials. 2021. V. 14. 6757. https://doi.org/10.3390/ma14226757
- Курмаз С. В., Фадеева Н. В., Кнерельман Е. И., Давыдова Г. И. Получение пористых полимерных сеток N-винилпирролидона с диметакрилатом триэтиленгликоля и определение их удельной площади поверхности с помощью бенгальского розового // ЖПХ. 2018. Т. 91. № 1. С. 115–122 [Kurmaz S. V., Fadeeva N. V., Knerelman E. I., Davydova G. I. Preparation of porous polymer networks of N-vinylpyrrolidone with triethylene glycol dimethacrylate and determination of their specific surface area using Rose Bengal dye // Russ. J. Appl. Chem. 2018. V. 91. P. 105–112. http://dx.doi.org/10.1134/s1070427218010172].
- Chandía N. P., Matsuhiro B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties // Int. J. Biol. Macromol. 2008. V. 42. N 3. P. 235–240. https://doi.org/10.1016/j.ijbiomac.2007.10.023
- Soares J. P., Santos J. E., Chierice G. O., Cavalheiro É. T. G. Thermal behavior of alginic acid and its sodium salt // Ecletica Quimica. 2004. V. 29. N 2. P. 53–56. www.scielo.br/eq
- Белозерская Г. Г., Бычичко Д. Ю., Кабак В. А., Лемперт А. Р., Неведрова О. Е., Малыхина Л. С., Миронов М. С., Логвинова Ю. С., Голубев Е. М., Широкова Т. И., Вдовин В. М., Момот А. П. Создание новых гемостатических покрытий локального действия на основе альгината натрия // Клиническая физиология кровообращения. 2018. Т. 15. № 3. С. 222–229. https://doi.org/10.24022/1814-6910-2018-15-3-222-229
- Khoshmohabat H., Paydar S., Kazemi H. M., Dalfardi B. Overview of agents used for emergency hemostasis // Trauma Mon. 2016. V. 21. N 1. P. e26023. https://doi.org/10.5812/traumamon.26023
- Шелковский В. С. Использование окислительно-восстановительных и агрегационных свойств красителя метиленового синего в нанобиофизических исследованиях // Биофиз. вестн. 2015. № 33. С. 5–9 [Shelkovsky V. S. Redox interactions of methylene blue with cysteine amino acid as a possible mechanizm of biological action of the dye // Biophys. Bull. 2017. V. 1. N 37. https://doi.org/10.26565/2075-3810-2017-37-04
- Salimi A., Roosta A. Experimental solubility and thermodynamic aspects of methylene blue in different solvents // Thermochim. Acta. 2019. V. 675. P. 134–139. https://doi.org/10.1016/j.tca.2019.03.024
- Selvam S., Sarkar I. Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation // J. Pharmaceutical Analysis. 2017. V. 7. N 1. P. 71–75. https://doi.org/10.1016/j.jpha.2016.07.006
- Ho Y. S., McKay G. Pseudo-second order model for sorption processes // Process Biochem. 1999. V. 34. N 5. P. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5
- Ho Y. S., Mckay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat // Canad. J. Chem. Eng. 1998. V. 76. P. 822–827. https://doi.org/10.1002/cjce.5450760419
Қосымша файлдар


