[]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучено влияние продолжительности химической активации с использованием KOH на поверхностный состав, пористые характеристики, электрохимические параметры углей, выделенных из отходов целлюлозно-бумажного производства — лигносульфоната натрия. Методом низкотемпературной порометрии показано, что активация приводит к существенному развитию пористости электродного материала и увеличению площади поверхности до 2610 м²·г⁻¹. При этом площадь поверхности определяется длительностью обработки. Электрохимические характеристики электродных материалов определены методами гальваностатического заряда–разряда, циклической вольтамперометрии, спектроскопии электрохимического импеданса. Установлено, что удельная емкость углей в щелочном электролите 6 М NaOH существенно выше, чем определенная в нейтральном электролите 1 М Na₂SO₄, что обусловлено протеканием обратимых окислительно-восстановительных взаимодействий с участием кислородсодержащих функциональных групп кислотного характера. Выявлены корреляции между пористостью и электрохимическими характеристиками активированных углей.

About the authors

E. V. Sivenkova

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

E. A. Arkhipova

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

A. S. Ivanov

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

N. O. Taibarey

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

K. I. Maslakov

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

S. Y. Kupreenko

Lomonosov Moscow State University, Faculty of Chemistry

Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3

S. V. Savilov

Lomonosov Moscow State University, Faculty of Chemistry; A.V. Topchiev Institute of Petrochemical Synthesis of RAS

Author for correspondence.
Email: sivenkova.elizaveta.99@mail.ru
119991, GSP-1, Moscow, Leninskie Gory, 1, bld. 3; 119071, GSP-1, Moscow, Leninsky Ave., 29, bld. 2

References

  1. Cardoso M., De Oliveira É.D., Passos M. L. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills // Fuel. 2009. V. 88. N 4. P. 756–763. https://doi.org/10.1016/j.fuel.2008.10.016
  2. Aro T., Fatehi P. Production and application of lignosulfonates and sulfonated lignin // ChemSusChem. 2017. V. 10. N 9. P. 1861–1877. https://doi.org/10.1002/cssc.201700082
  3. Azadi P., Inderwildi O. R., Farnood R., King D. A. Liquid fuels, hydrogen and chemicals from lignin: A critical review // Renew. Sustain. Energy Rev. 2013. V. 21. P. 506–523. https://doi.org/10.1016/j.rser.2012.12.022
  4. Fang Z., Smith R. L. Production of biofuels and chemicals from lignin. Singapore: Springer Singapore, 2016. P. 3–35.
  5. Kocaturk E., Salan T., Ozcelik O., Alma M. H. Recent advances in lignin-based biofuel production // Energies. 2023. V. 16. N 8. P. 1–17. https://doi.org/10.3390/en16083382
  6. He P., Dai L., Li X., Yang Z., Hua F., Li L., Wei B. Lignosulfonate and its derivatives for oil-well drilling: A concise review // Pap. Biomater. 2021. V. 6. N 2. P. 59–68. https://doi.org/10.12103/j.issn.2096-2355.2021.02.006
  7. Degtyareva É. V., Marakina L. D., Surov Yu. N., Sobolʹ G. N., Zinsu Zh. Ch., Galʹchenko T. G. Plasticizers based on nonionogenous surface-active substances and macromolecular compounds for refractory concretes // Refractories. 1986. V. 27. N 1. P. 20–23. https://doi.org/10.1007/BF01398282
  8. Khajeh A., Nazari Z., Movahedrad M., Vakili A. H. A state-of-the-art review on the application of lignosulfonate as a green alternative in soil stabilization // Sci. Total Environ. 2024. V. 943. ID 173500. https://doi.org/10.1016/j.scitotenv.2024.173500
  9. Li L., Wang J., Chen Z., Dong J., Chang P., Zhang J., Yang T., Ding R. Preparation of sodium lignosulfonate-based porous carbon for supercapacitors with outstanding rate capacity and high voltage // Chem. Eng. J. 2025. V. 507. ID 160760. https://doi.org/10.1016/j.cej.2025.160760
  10. Ling Y.-K., Li J.-Z., Zhu T., Wang J.-H., Wang Q., Li Y.-J., Nong G.-Z. Sodium lignosulfonate-derived ONS-doped hierarchical porous carbon for high-performance DSSC counter electrodes // Org. Electron. 2024. V. 127. ID 107015. https://doi.org/10.1016/j.orgel.2024.107015
  11. Табаров Ф. С., Астахов М. В., Калашник А. Т., Климонт А. А., Козлов В. В., Галимзянов Р. Р. Активация углеродных нановолокон и их применение в качестве электродных материалов для суперконденсаторов // ЖПХ. 2019. Т. 92. № 9. С. 1188–1196. https://doi.org/10.1134/S0044461819090123 [Tabarov F. S., Astakhov M. V., Kalashnik A. T., Klimont A. A., Kozlov V. V., Galimzyanov R. R. Activation of carbon nanofibers and their application as electrode materials for supercapacitors // Russ. J. Appl. Chem. V. 92. N 9. P. 1266–1273. https://doi.org/10.1134/S107042721909012X].
  12. Luo W., He Q., Zhang C., Jiang Z., Cheng Y., Wang H. Lignin-based polymer networks enabled N, S Co-doped defect-rich hierarchically porous carbon anode for long-cycle Li-ion batteries // ACS Sustain. Chem. Eng. 2024. V. 12. N 7. P. 2881–2892. https://doi.org/10.1021/acssuschemeng.3c08045
  13. Rathod S., Jaiswal N., Ravikumar M.K., Patil S., Shukla A. Effect of binary additives on performance of the undivided soluble-lead-redox-flow battery // Electrochim. Acta. 2021. V. 365. ID 137361. https://doi.org/10.1016/j.electacta.2020.137361
  14. Zhao Z., Hao S., Hao P., Sang Y., Manivannan A., Wu N., Liu H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode // J. Mater. Chem. A. 2015. V. 3. N 29. P. 15049–15056. https://doi.org/10.1039/C5TA02770E
  15. Arkhipova E. A., Ivanov A. S., Maslakov K. I., Savilov S. V. Nitrogen-doped mesoporous graphene nanoflakes for high performance ionic liquid supercapacitors // Electrochim. Acta. 2020. V. 353. ID 136463. https://doi.org/10.1016/j.electacta.2020.136463
  16. Gao B., Zhou H., Yang J. One-step preparation of nitrogen-doped graphene nanosheets for high-performance supercapacitors // Appl. Surf. Sci. 2017. V. 409. P. 350–357. https://doi.org/10.1016/j.apsusc.2017.03.015
  17. Lin R., Taberna P. L., Chmiola J., Guay D., Gogotsi Y., Simon P. Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors // J. Electrochem. Soc. 2009. V. 156. N 1. P. A7–A12. https://doi.org/10.1149/1.3002376
  18. Wang W., Guo S., Lee I., Ahmed K., Zhong J., Favors Z., Zaera F., Ozkan M., Ozkan C. S. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors // Sci. Rep. 2014. V. 4. N 1. ID 04452. https://doi.org/10.1038/srep04452
  19. Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. N 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  20. Oginni O., Singh K., Oporto G., Dawson-Andoh B., McDonald L., Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics // Bioresour. Technol. Rep. 2019. V. 7. ID 100266. https://doi.org/10.1016/j.biteb.2019.100266
  21. Lv Y., Zhang F., Dou Y., Zhai Y., Wang J., Liu H., Xia Y., Tu B., Zhao D. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application // J. Mater. Chem. 2012. V. 22. N 1. P. 93–99. https://doi.org/10.1039/C1JM12742J
  22. Zhang Y., Wen G., Fan S., Tang X., Wang D., Ding C. Partially reduced and nitrogen-doped graphene oxides with phenylethylamine for high-performance supercapacitors // J. Mater. Sci. 2018. V. 53. N 16. P. 11715–11727. https://doi.org/10.1007/s10853-018-2471-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».