Эффективность плазмохимического получения водорода из пропана под действием лазерного излучения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучен плазмохимический процесс получения водорода из пропана под действием лазерного излучения. Исследование проведено с использованием фемтосекундного (35 фс) и наносекундного (7 нс) импульсных источников лазерного излучения. Построены экспериментальные зависимости объемного содержания водорода на выходе из реактора в зависимости от скорости подачи пропана. Предложены уравнения, описывающие количество получаемого водорода с учетом скорости подачи пропана и эффекта его смешения с образующимся водородом. Полученные уравнения могут быть применены к плазмохимическому разложению других углеводородов. В рамках проведенного исследования они позволили рассчитать максимально возможную эффективность получения водорода при данных характеристиках лазерного излучения. Даны рекомендации по изменению параметров лазерного излучения с целью повышения эффективности плазмохимического получения водорода.

Full Text

Restricted Access

About the authors

Юрий Станиславович Тверьянович

Санкт-Петербургский государственный университет

Author for correspondence.
Email: tys@bk.ru
ORCID iD: 0000-0003-4343-9817

д.х.н., проф., Институт химии 

Russian Federation, 198504, г. Санкт-Петербург, Университетский пр., д. 26

Алексей Валерьевич Поволоцкий

Санкт-Петербургский государственный университет

Email: tys@bk.ru
ORCID iD: 0000-0001-7931-9572

д.ф.-м.н., проф., Институт химии

Russian Federation, 198504, г. Санкт-Петербург, Университетский пр., д. 26

Святослав Сергеевич Луньков

Санкт-Петербургский государственный университет

Email: tys@bk.ru
ORCID iD: 0009-0000-5897-4455

Институт химии

Russian Federation, 198504, г. Санкт-Петербург, Университетский пр., д. 26

References

  1. Kong F., Luo Q., Xu H., Sharifi M., Song D., Chin S. L. Explosive photodissociation of methane induced by ultrafast intense laser // J. Chem. Phys. 2006. V. 125 (13). 133320. https://doi.org/10.1063/1.2204919
  2. Song D., Liu K., Kong F., Xia A. Neutral dissociation of methane in the ultra-fast laser pulse // Sci. Bull. 2008. V. 53. P. 1946–1950. https://doi.org/10.1007/s11434-008-0232-6
  3. Wu Z., Wu C., Liang Q., Wang S., Liu M., Deng Y., Gong Q. Fragmentation dynamics of methane by few-cycle femtosecond laser pulses // J. Chem. Phys. 2007. V. 126 (7). 074311. https://doi.org/10.1063/1.2472341
  4. Ghorbani Z., Parvin P., Reyhani A., Mortazavi S. Z., Moosakhani A., Maleki M., Kiani S. Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure // J. Phys. Chem. C. 2014. V. 118. P. 29822–29835. https://doi.org/10.1021/jp508634d
  5. Wang S., Tang X., Gao L., Elshakre M.E., Kong F. Dissociation of methane in intense laser fields // J. Phys. Chem. A. 2003. V. 107. N 32. P. 6123–6129. https://doi.org/10.1021/jp022243e
  6. Guo Y. Q., Bhattacharya A., Bernstein E. R. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales // J. Phys. Chem. A. 2009. V. 113. N 1. P. 85–96. https://doi.org/10.1021/jp806230p
  7. Rezaei F., Gorbanev Y., Chys M., Nikiforov A., Van Hulle S. W. H., Cos P., Bogaerts A., De Geyter N. Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. // Plasma Process. Polym. 2018. V. 15. N 6. 1700226. https://doi.org/10.1002/ppap.201700226
  8. Hamann S., Rond C., Pipa A. V., Wartel M., Lombardi G., Gicquel A., Röpcke J. Spectroscopic study CH4 and B2H6 used for doped diamond deposition // Plasma Sources Sci. Technol. 2014. V. 23. N 4. 045015. https://doi.org/10.1088/0963-0252/23/4/045015
  9. Abdelli-Messaci S., Kerdja T., Bendib A., Malek S. CN emission spectroscopy study of carbon plasma in nitrogen environment // Spectrochim. Acta. Part B: At. Spectrosc. 2005. V. 60. N 7–8. P. 955. https://doi.org/10.1016/j.sab.2005.07.002
  10. Morgan N. N., ElSabbagh M. Hydrogen production from methane through pulsed DC plasma // Plasma Chem. Plasma Process. 2017. V. 37. N 5. P. 1375–1392. https://doi.org/10.1007/s11090-017-9829-3
  11. Bokor J., Freeman R. R., White J. C., Storz R. H. Two-photon excitation of the n = 3 level in H and D atoms // Phys. Rev. A. 1981. V. 24. P. 612–614. https://doi.org/10.1103/PhysRevA.24.612
  12. Петин С. Н. Энергетическая эффективность производства и потребления водорода // Вестн. МЭИ. 2019. № 2. С. 29–36. https://doi.org/10.24160/1993-6982-2019-2-29-36
  13. Hall C. A. S., Balogh S., Murphy D. J. R. What is the minimum EROI that a sustainable society must have? // Energies. 2009. V. 2. N 1. P. 25–47. https://doi.org/10.3390/en20100025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the installation.

Download (115KB)
3. Fig. 2. Generation of hydrogen by pulses of 35 fs duration.

Download (111KB)
4. Fig. 3. Dependences of the plasma glow intensity under the action of pulses with a duration of 35 fs (1) and 7 ns (2) on the wavelength of its radiation.

Download (75KB)
5. Fig. 4. Generation of hydrogen by pulses of 7 ns duration.

Download (131KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies