Сверхсшитые полимерные сорбенты, модифицированные 4-винилпиридином: синтез, адсорбционные свойства и применение для выделения полимерной соли цефуроксима в режиме флэш-хроматографии

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезированы сверхсшитые полимерные сорбенты на основе терполимеров стирола, дивинилбензола и 4-винилпиридина. Пористая и химическая структура сорбентов исследована с помощью методов низкотемпературной адсорбции–десорбции азота и инфракрасной спектроскопии. Определены адсорбционные характеристики сорбентов по отношению к цефуроксиму в статических и динамических условиях. Установлено, что введение 4-винилпиридина в полимерную матрицу сорбентов способствует усиленной адсорбции цефуроксима. Показана возможность применения пиридинсодержащих сверхсшитых полимерных сорбентов для разделения соли поли(акриламид-со-2-аминоэтилметакрилат)а с цефуроксимом и свободного цефуроксима в режиме флэш-хроматографии. Чистота полимерной соли цефуроксима после выделения подтверждена с помощью высокоэффективной жидкостной хроматографии в эксклюзионном режиме.

Full Text

Restricted Access

About the authors

Антон Сергеевич Кириллов

Институт высокомолекулярных соединений РАН

Author for correspondence.
Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0003-1350-6775

м.н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

Артем Андреевич Вагин

Институт высокомолекулярных соединений РАН

Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0002-3891-3601

м.н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

Максим Сергеевич Борисенко

Институт высокомолекулярных соединений РАН

Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0001-9335-5932

к.х.н., н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

Наталья Николаевна Шевченко

Институт высокомолекулярных соединений РАН

Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0003-2471-297X

к.х.н., с.н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

Валерий Дмитриевич Красиков

Институт высокомолекулярных соединений РАН

Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0002-2137-7144

д.х.н., г.н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

Николай Иванович Горшков

Институт высокомолекулярных соединений РАН

Email: a.kirillov2622@gmail.com
ORCID iD: 0000-0003-1104-8264

к.х.н., с.н.с.

Russian Federation, 199004, г. Санкт-Петербург, Большой пр. В. О., д. 31

References

  1. Qi F., Wu J., Li H., Ma G. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects // Front. Chem. Sci. 2019. V. 13. P. 14–27. http://doi.org/10.1007/s11705-018-1729-4
  2. Kakkar A., Traverso G., Farokhzad O. C., Weissleder R., Langer R. Evolution of macromolecular complexity in drug delivery systems // Nat. Rev. Chem. 2017. V. 1. N 8. P. 0063. http://doi.org/10.1038/s41570-017-0063
  3. Bozzuto G., Molinari A. Liposomes as nanomedical devices // Int. J. Nanomedicine. 2015. V. 10. P. 975–999. http://doi.org/10.2147/IJN.S68861
  4. Pawar V., Kansal S., Garg G., Awasthi R., Singodia D., Kulkarni G. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems // Drug Deliv. 2011. V. 18. P. 97–110. http://doi.org/10.3109/10717544.2010.520354
  5. Mehnert W., Mäder K. Solid lipid nanoparticles: Production, characterization and applications // Adv. Drug Deliv. Rev. 2012. T. 64. P. 83–101. https://doi.org/10.1016/s0169-409x(01)00105-3
  6. Kopeček J., Yang J. Polymer nanomedicines // Adv. Drug Deliv. Rev. 2020. V. 156. P. 40–64. https://doi.org/10.1016/j.addr.2020.07.020
  7. Girase M. L., Patil P. G., Ige P. P. Polymer-drug conjugates as nanomedicine: A review // Int. J. Polym. Mater. 2020. V. 69. N 15. P. 990–1014. https://doi.org/10.1080/00914037.2019.1655745
  8. Ekladious I., Colson Y., Grinstaff M. Polymer–drug conjugate therapeutics: Advances, insights and prospects // Nat. Rev. Drug Discov. 2018. V. 18. N 4. P. 273–294. https://doi.org/10.1038/s41573-018-0005-0
  9. Neusaenger A. L., Yao X., Yu J., Kim S., Hui H.-W., Huang L., Que C., Yu L. Amorphous drug–polymer salts: Maximizing proton transfer to enhance stability and release // Mol. Pharm. 2023. V. 20. N 2. P. 1347–1356. https://doi.org/10.1021/acs.molpharmaceut.2c00942
  10. Mesallati H., Umerska A., Paluch K., Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin // Mol. Pharm. 2017. V. 14. N 7. P. 2209–2223. https://doi.org/10.1021/acs.molpharmaceut.7b00039
  11. Niesyto K., Neugebauer D. Linear copolymers based on choline ionic liquid carrying anti-tuberculosis drugs: Influence of anion type on physicochemical properties and drug release // Int. J. Mol. Sci. 2020. V. 22. N 1. P. 284. https://doi.org/10.3390/ijms22010284
  12. Solovskii M. V., Borisenko M. S., Smirnova M. Y., Eropkin M. Y., Eropkina E. M., Tarabukina E. B. Polymer complexes of rifampicin antibiotic based on poly(2-acrylamido-2-methylpropanesulfonic acid) // Pharm. Chem. J. 2022. V. 56. N 8. P. 1041–1044. https://doi.org/10.1007/s11094-022-02749-1.
  13. Tarabukina E. B., Solovskij M. V., Pautov V. D., Amirova A. I., Zakharova N. V., Smirnova M. Yu., Ananʹeva T. D., Imanbaev R. T., Eropkin M. Yu., Eropkina E. M. Physicochemical, molecular, and biological properties of complexes formed between aminoglycoside antibiotics and some anionic copolymers of acrylic series: Part II // J. Bioact. Compat. Polym. 2015. V. 30. N 6. P. 571–583. https://doi.org/10.1177/0883911515592258
  14. Solovskii M. V., Borisenko M. S., Vlasova E. N., Tarabukina E. B., Zakharova N. V., Prazdnikova T. A. Polymeric complexes of ofloxacin and their activity against tuberculosis mycobacteria // Pharm. Chem. J. 2017. V. 51. P. 250–253. https://doi.org/10.1007/s11094-017-1592-5.
  15. Lin X., Kück U. Cephalosporins as key lead generation beta-lactam antibiotics // Appl. Microbiol. Biotechnol. 2022. V. 106. N 24. P. 8007–8020. https://doi.org/10.1007/s00253-022-12272-8
  16. Kirillov A. S., Dubrov E. N., Gorshkov N. I., Krasikov V. D. Microporous hypercrosslinked polystyrene sorbents in sorption purification of water-soluble polymers from low-molecular-weight compounds // Russ. J. Appl. Chem. 2022. V. 95. N 8. P. 1236–1242. https://doi.org/10.1134/S1070427222080213.
  17. Davankov V. A., Tsyurupa M. P. Structure and properties of hypercrosslinked polystyrene – the first representative of a new class of polymer networks // React. Polym. 1990. V. 13. N 1. P. 27–42. https://doi.org/10.1016/0923-1137(90)90038-6
  18. Davankov V. A., Tsyurupa M. P. Hypercrosslinked polymeric networks and adsorbing materials: Synthesis, properties, structure, and applications. New York: Elsevier, 2011. P. 167–184.
  19. Fontanals N., Marcé R. M., Borrull F., Cormack P. A. G. Hypercrosslinked materials: Preparation, characterisation and applications // Polym. Chem. 2015. V. 6. N 41. P. 7231–7244. https://doi.org/10.1039/C5PY00771B
  20. Bratkowska D., Marcé R. M., Cormack P. A. G., Sherrington D. C., Borrull F., Fontanals N. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples // J. Chromatogr. A. 2010. V. 1217. N 10. P. 1575–1582. https://doi.org/10.1016/j.chroma.2010.01.037
  21. Shao L., Huang J. Controllable synthesis of N-vinylimidazole-modified hyper-cross-linked resins and their efficient adsorption of p-nitrophenol and o-nitrophenol // J. Colloid Interface Sci. 2017. V. 507. P. 42–50. https://doi.org/10.1016/j.jcis.2017.07.112
  22. You X., Wang Y., Han L., Liu Q., Fei Z., Chen X., Zhang Z., Tang J., Cui M., Qiao X. Reinforced Rhodamine B adsorption on the hyper-cross-linked resin co-modified by pyridine and carboxyl groups // Micropor. Mesopor. Mater. 2023. V. 349. P. 112423. https://doi.org/10.1016/j.micromeso.2022.112423
  23. You X., Han L., Liu Q. Adsorption of Rhodamine B from aqueous solutions using polarity-tunable hyper-cross-linked resins // New J. Chem. 2023. V. 47. N 32. P. 15250–15260. https://doi.org/10.1039/D3NJ02711B
  24. Liu Y., Peng X. Multi-functional hypercrosslinked polystyrene as high-performance adsorbents for artificial liver blood purification // Front. Chem. 2021. V. 9. P. 789814. https://doi.org/10.3389/fchem.2021.789814
  25. Wang X., Zhang T., Wang X., Huang J. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B // J. Colloid Interface Sci. 2018. V. 531. P. 394–403. https://doi.org/10.1016/j.jcis.2018.07.071
  26. Fontanals N., Puig P., Galia M., Marce R. M., Borrull F. New hydrophilic polymeric resin based on 4-vinylpyridine-divinylbenzene for solid-phase extraction of polar compounds from water // J. Chromatogr. A. 2004. V. 1035. N 2. P. 281–284. https://doi.org/10.1016/j.chroma.2004.02.049
  27. Fontanals N., Marcé R. M., Galià M., Borrull F. Preparation and characterization of highly polar polymeric sorbents from styrene–divinylbenzene and vinylpyridine–divinylbenzene for the solid-phase extraction of polar organic pollutants // J. Polym. Sci. A: Polym. Chem. 2003. V. 41. N 13. P. 1927–1933. https://doi.org/10.1002/pola.10743
  28. Bratkowska D., Fontanals N., Borrull F., Cormack P. A. G., Sherrington D. C., Marcé R. M. Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water // J. Chromatogr. A. 2010. V. 1217. N 19. P. 3238–3243. https://doi.org/10.1016/j.chroma.2009.08.091
  29. Shao L., Li Y., Zhang T., Liu M., Huang J. Controllable synthesis of polar modified hyper-cross-linked resins and their adsorption of 2-naphthol and 4-hydroxybenzoic acid from aqueous solution // Ind. Eng. Chem. Res. 2017. V. 56. N 11. P. 2984–2992. https://doi.org/10.1021/acs.iecr.6b04953
  30. Berliner M. A., Belecki K. Simple, rapid procedure for the synthesis of chloromethyl methyl ether and other chloro alkyl ethers // J. Org. Chem. 2005. V. 70. N 23. P. 9618–9621. https://doi.org/10.1021/jo051344g
  31. Kirillov A. S., Gorshkov N. I., Shevchenko N. N., Saprykina N. N., Krasikov V. D. Tuning the porosity of hypercrosslinked styrene-divinylbenzene copolymers for efficient adsorption of rifampicin from aqueous media // J. Polym. Res. 2023. V. 30. N 11. P. 405. https://doi.org/10.1007/s10965-023-03802-7
  32. Соловский М. В., Смирнова М. Ю., Тарабукина Е. Б., Захарова Н. В. Синтез сополимеров акриламида с гидрохлоридом 2-аминоэтилметарилата — носителей биологически активных веществ // ЖОХ. 2012. Т. 82. № 10. С. 1650‒1655.
  33. Tsyurupa M. P., Blinnikova Z. K., Davidovich Y. A., Lyubimov S. E., Naumkin A. V., Davankov V. A. On the nature of «functional groups» in non-functionalized hypercrosslinked polystyrenes // React. Funct. Polym. 2012. V. 72. N 12. P. 973–982. https://doi.org/10.1016/j.reactfunctpolym.2011.03.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of a hypercrosslinked copolymer of styrene and divinylbenzene (1) and hypercrosslinked terpolymers containing 5 (2), 12 (3) and 20 mol% (4) 4-vinylpyridine.

Download (100KB)
3. Fig. 2. Isotherms of equilibrium adsorption of cefuroxime from an aqueous solution on a hypercrosslinked copolymer of styrene and divinylbenzene (1) and hypercrosslinked terpolymers containing 20 (2), 5 (3) and 12 mol% (4) of 4-vinylpyridine; c0 = 100–500 mg L–1, V = 8 ml, m = 8 mg.

Download (62KB)
4. Fig. 3. Output retention curves of cefuroxime from an aqueous solution on a hyper-cross-linked copolymer (1) and hyper-cross-linked terpolymers containing 20 (2), 12 (3) and 5 mol% (4) 4-vinylpyridine; W = 0.5 ml min–1, m = 200 mg, c0 = 300 mg L–1.

Download (87KB)
5. Fig. 4. Chromatograms of cefuroxime (1), poly(acrylamide-co-2-aminoethyl methacrylate)a (2), polymer salt of cefuroxime based on poly(acrylamide-co-2-aminoethyl methacrylate)a before (3) and after (4) separation into hyper-crosslinked polymer sorbent containing 5 mol% 4-vinylipyridine. Absorbance at wavelengths 210 (black line) and 280 nm (red line). Column PSS Suprema, 10 µm, 8 × 300 mm; eluent 0.2 M aqueous solution of NaCl; flow rate 1 ml min–1.

Download (97KB)
6. Scheme 1

Download (134KB)
7. Scheme 2

Download (229KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies