Steam Reforming of Isobutanol on Biochar-Supported Ni–Co Catalysts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The equilibrium parameters of steam isobutanol reforming were calculated. These include the H2 yield, selectivity with respect to carbon-containing gases, and feed conversion. The calculated data, on the whole, agree with the published data and experimental values of the isobutanol conversion and yield of isobutyraldehyde and higher alkanes on Ni–Co catalysts supported on biochars prepared by hydrothermal carbonization of cellulose. On the other hand, the calculated yields of H2, СО, and СН4 disagree with the experimental data, which suggests that the equilibrium in the experiments on the steam isobutanol reforming on this catalyst is not attained. Feeding a homogeneous mixture of water, isobutanol, and ethanol into the reactor at 700°С allows the Н2 yield to be increased from 58 to 66% and the water conversion, from 58 to 76% compared to the steam reforming of isobutanol without ethanol. The addition of ethanol allows the coking to be significantly reduced and the H2 and СО yield higher than 90% at 900°С to be reached.

Sobre autores

A. Osipov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

M. Kulikova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. Kuz'min

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. Kulikov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. Vladimirov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

A. Loktev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

Bibliografia

  1. Агапкин А. М., Махотина И. А. Переработка сельскохозяйственных отходов: рынок органических удобрений и производство органических пищевых продуктов // Хранение и переработка сельхозсырья. 2021. Т. 3. С. 212-225. https://doi.org/10.36107/spfp.2021.221
  2. Kaur P., Kaur G. J., Routray W., Rahimi J., Nair G. R., Singh A. Recent advances in utilization of municipal solid waste for production of bioproducts: A bibliometric analysis // Case Stud. Chem. Environ. Eng. 2021. V. 4. ID 100164. https://doi.org/10.1016/j.cscee.2021.100164
  3. Molino A., Chianese S., Musmarra D. Biomass gasification technology: The state of the art overview //j. Energy Chem. 2016. V. 25. N 1. P. 10-25. https://doi.org/10.1016/j.jechem.2015.11.005
  4. Isa K. Md., Snape C. E., Uguna C., Meredith W. High conversions of miscanthus using sub- and supercritical water above 400 °C //j. Anal. Appl. Pyrolysis. 2015. V. 113. P. 646-654. https://doi.org/10.1016/j.jaap.2015.04.014
  5. Арапова О. В., Чистяков А. В., Цодиков М. В., Моисеев И. И. Лигнин - возобновляемый ресурс углеводородных продуктов и энергоносителей (Обзор) // Нефтехимия. 2020. Т. 60. № 3. С. 251-269. https://doi.org/10.31857/S0028242120030041
  6. Нехаев А. И., Максимов А. Л. Получение ароматических углеводородов из биомассы. Обзор // Нефтехимия. 2021. Т. 61. № 1. С. 21-42. https://doi.org/10.31857/S0028242121010020
  7. Sarkodie S. A., Owusu P. A., Leirvik T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions // Environ. Res. Lett. 2020. V. 15. N 3. ID 034049. https://doi.org/10.1088/1748-9326/ab7640
  8. Mendoza C. L., Sermyagina E., Saari J., Silva M., Cardoso M., Matheus G., Vakkilainen E. Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues // Biomass Bioenergy. 2021. V. 147. ID 106004. https://doi.org/10.1016/j.biombioe.2021.106004
  9. Ogo S., Sekine Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A Review // Fuel Process. Technol. 2020. V. 199. ID 106238. https://doi.org/10.1016/j.fuproc.2019.106238
  10. Abhimanyu K. Yadav, Prakash D. Vaidya. A Review on butanol steam reforming for renewable hydrogen production //j. Indian Chem. Soc. 2023. V. 100. ID 101050. https://doi.org/10.1016/j.jics.2023.101050
  11. Дедов А. Г., Караваев А. А., Локтев А. С., Осипов А. К. Биоизо-бутанол - перспективное сырье для производства "зеленых" углеводородов и полупродуктов нефтехимии (обзор) // Нефтехимия. 2021. Т. 61. № 6. С. 716-736. https://doi.org/10.31857/S0028242121060198
  12. Zeng S., Zhang W., Li J., Lin Sh., Xu Sh., Wei Y., Liu Zh. Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction //j. Catal. 2022. V. 413. P. 517-526. https://doi.org/10.1016/j.jcat.2022.07.002
  13. Stenina I., Yaroslavtsev A. Modern technologies of hydrogen production // Processes. 2023. V. 11. P. 56-90. https://doi.org/10.3390/pr11010056
  14. Bampos G., Karaiskos S., Ramantani T., Tsatsos S., Kyriakou G. Steam reforming of butanol-ethanol mixture for H2 production over Ru catalysts // Appl. Catal. A: General. 2023. V. 664. ID 119347. https://doi.org/10.1016/j.apcata.2023.119347
  15. Dhanala V., Maity S. K., Shee D. Oxidative steam reforming of isobutanol over Ni/γ-Al2O3 catalysts: A Comparison with thermodynamic equilibrium analysis //j. Ind. Eng. Chem. 2015. V. 27. P. 153-163. https://doi.org/10.1016/j.jiec.2014.12.029
  16. Dhanala V., Maity S. K., Shee D. Roles of supports (γ-Al2O3, SiO2, ZrO2) and performance of metals (Ni, Co, Mo) in steam reforming of isobutanol // RSC Adv. 2015. V. 5. P. 52522-52532. https://doi.org/10.1039/C5RA03558A
  17. Lee I. C., Clair J. G. St., Gamson A. S. Catalytic partial oxidation of isobutanol for the production of hydrogen // Int. J. Hydrog. Energy. 2012. V. 37. P. 1399-1408. https://doi.org/10.1016/j.ijhydene.2011.09.121
  18. Ramos R., Abdelkader-Fernández V. K., Matos R., Peixoto A. F., Fernandes D. M. Metal-supported biochar catalysts for sustainable biorefinery, electrocatalysis, and energy storage applications: A Review // Catalysts. 2022. V. 12. P. 207-265. https://doi.org/10.3390/catal12020207
  19. Lee J., Kim K.-H., Kwon E. E. Biochar as a catalyst // Renew. Sust. Energ. Rev. 2017. V. 77. P. 70-79. https://doi.org/10.1016/j.rser.2017.04.002
  20. Berge N. D., Li L., Flora J. R. V., Ro K. S. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes // Waste Manage. 2015. V. 43. P. 203-217. https://doi.org/10.1016/j.wasman.2015.04.029
  21. Liu W.-J., Jiang H., Yu H.-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material // Chem. Rev. 2015. V. 115. N 22. P. 12251-12285. https://doi.org/10.1021/acs.chemrev.5b00195
  22. Lytkina A. A., Orekhova N. V., Ermilova M. M., Efimov M. N., Yaroslavtsev A. B., Belenov S. V., Guterman V. E. Bimetallic carbon nanocatalysts for methanol steam reforming in conventional and membrane reactors // Catal. Today. 2016. V. 268. P. 60-67. https://doi.org/10.1016/j.cattod.2016.01.003
  23. Куликова M. В., Осипов А. К., Пономарев С. А., Локтев А. С., Дедов А. Г. Ni,Co-катализаторы паровой конверсии изо-бутанола на основе биоуглей // Химия в интересах устойчив. развития. 2023. Т. 31. № 5. С. 559-567. https://doi.org/10.15372/KhUR2023499
  24. Roy B., Sullivan H., Leclerc C. A. Effect of variable conditions on steam reforming and aqueous phase reforming of n-butanol over Ni/CeO2 and Ni/Al2O3 catalysts //j. Power Sources. 2014. V. 267. P. 280-287. https://doi.org/10.1016/j.jpowsour.2014.05.090

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies