Impact of Precursor Granulometry on the Synthesis of Calcium-Aluminate Phases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calcium aluminate phases were synthesized in the range 950–1450°C from available raw materials: carbonate rock and metallurgical alumina, predominantly in the γ form with different grain sizes. The calculations of the amount of raw materials were based on the requirement to ensure the chemical composition of the product: Al2O3 71–72 and CaO 27–28 wt %. The designed phase composition of the samples is 65 wt % CaAl2O4 and 35 wt % CaAl4O7. When alumina with a grain size of 90 μm and a spherulitic microstructure is introduced into the reaction, the formation of the CaAl2O4 and CaAl4O7 phases mainly occurs in the range of 1250–1350°C, and phase equilibrium is established at 1450°C. Reducing the size of γ-alumina grains to 10 μm and destroying their spherulitic microstructure shifts the formation of calcium aluminates to the temperature range below 1250°C, and also significantly increases the rate of synthesis of target products.

About the authors

M. A. Trubitsyn

Belgorod State National Research University

Email: acjournal.nauka.nw@yandex.ru
308015, Belgorod, Russia

L. V. Furda

Belgorod State National Research University

Email: acjournal.nauka.nw@yandex.ru
308015, Belgorod, Russia

M. N. Yapryntsev

Belgorod State National Research University

Email: acjournal.nauka.nw@yandex.ru
308015, Belgorod, Russia

N. A. Volovicheva

Belgorod State National Research University

Email: acjournal.nauka.nw@yandex.ru
308015, Belgorod, Russia

M. O. Mikhaylyukova

Belgorod State National Research University

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
308015, Belgorod, Russia

References

  1. Rankin G. A., Wright E. F. The Ternary system CaO-Al2O3-SiO2 // Am. J. Sci. 1915. V. s4-39. N 229. P. 1-79.
  2. Nurse R. W., Welch J. H., Majumdar A. J. The CaO-Al2O3 system in a moisture free atmosphere // Trans. Brit. Ceram. Soc. 1965. N 64. P. 409-418.
  3. Jerebtsov D. A., Mikhailov G. G. Phase diagram of CaO-Al2O3 system // Ceram.Int. 2001. V. 27. N 1. Р. 25-28. https://doi.org/10.1016/S0272-8842(00)00037-7
  4. Calcium aluminate cements: Proceedings of a symposium dedicated to H. G. Midgley / Ed. R. J. Mangabhai. London; New York: Taylor & Francis, 1990. Р. 192. https://doi.org/10.1201/9781482288872
  5. Rojas-Hernandez R. E., Rubio-Marcos F., Fernandez J. F., Hussainova I. Aluminate-based nanostructured luminescent materials: Design of processing and functional properties // Materials. 2021. V. 14. N 16. ID 4591. https://doi.org/10.3390/ma14164591
  6. Santos T., Machado V. V. S., Borges O. H., Salvini V. R., Parr C., Pandolfelli V. C. Calcium aluminate cement aqueous suspensions as binders for Al2O3-based particle stabilised foams // Ceram.Int. 2021. V. 47. N 6. P. 8398-8407. https://doi.org/10.1016/j.ceramint.2020.11.204
  7. Parreira R. M., Andrade T. L., Luz A. P., Pandolfelli V. C., Oliveira I. R. Calcium aluminate cement-based compositions for biomaterial applications// Ceram.Int. 2016. V. 42. P. 11732-11738. https://doi.org/10.1016/j.ceramint.2016.04.092
  8. Mohamed B. M., Sharp J. H. Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4 //j. Mater. Chem. 1997. V. 7. P. 1595-1599. https://doi.org/10.1039/A700201G
  9. Rivas Mercury J. M., De Aza A. H., Pena P. Synthesis of CaAl2O4 from powders: Particle size effect //j. Eur. Ceram. Soc. 2005. V. 25. P. 3269-3279. https://doi.org/10.1016/j.jeurceramsoc.2004.06.021
  10. Gaki A., Perrakb Th., Kakali G. Wet chemical synthesis of monocalcium aluminate //j. Eur. Ceram. Soc. 2007. V. 27. N 2-3. P. 1785-1789. https://doi.org/10.1016/j.jeurceramsoc.2006.05.006
  11. Rodriguez M. A., Aguilar C. L., Aghayan M. A. Solution combustion synthesis and sintering behavior of CaAl2O4 // Ceram.Int. 2012. V. 38. N 1. P. 395- 399. https://doi.org/10.1016/j.ceramint.2011.07.020
  12. Kurajica S., Mandic V., Sipusic J. Thermal evolution of calcium aluminate gel obtained from aluminium sec-butoxide chelated with ethyl acetoacetate //j. Ceram. Sci. Technol. 2011. V. 2. N 1. Р. 15-22. https://doi.org/10.4416/JCST2010-00017
  13. Кузнецова Т. В., Талабер Й. Глиноземистый цемент. М.: Стройиздат, 1988. С 19-32.
  14. Singh V. K., Ali M. M., Mandal U. K. Formation kinetics of calcium aluminates //j. Am. Ceram. Soc. 1990. V. 73. P. 872-876. https://doi.org/10.1111/j.1151-2916.1990.tb05128.x
  15. Iftekhar Sh., Grins J., Svensson G. Lööf J., Jarmar T., Botton G. A., Andrei C. M., Engqvist H. Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures //j. Eur. Ceram. Soc. 2008. V. 28. N 4. P. 747-756. https://doi.org/10.1016/j.jeurceramsoc.2007.08.012
  16. Трубицын М. А., Япрынцев М. Н., Фурда Л. В., Воловичева Н. А., Кузин В. И., Зубащенко Р. В. Влияние режимов термообработки на процесс синтеза кальций-алюминатных фаз в технологии особо чистого высокоглиноземистого цемента // Вестн. БГТУ им. В. Г. Шухова. 2022. № 2. С. 84-93. https://doi.org/10.34031/2071-7318-2021-7-2-84-93
  17. Трубицын М. А., Фурда Л. В., Япрынцев М. Н., Воловичева Н. А. Исследование особенностей процессов фазообразования в высокоглиноземистой области системы СаО-Al2О3 // ЖНХ. 2022. Т. 67. № 8. С. 1183-1193. https://doi.org/10.31857/S0044457X2208027X
  18. Tian Y., Pan X., Yu H., Tu G. Formation mechanism of calcium aluminate compounds based on high- temperature solid-state reaction //j. Alloys Compd. 2016. N 670. Р. 96-104. https://doi.org/10.1016/j.jallcom.2016.02.059
  19. Пат. РФ 2794017 (опубл. 2022). Способ получения высокоглиноземистого цемента для низкоцементных огнеупорных литьевых масс.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies