Gd2O3–Carbon Nanoflakes (CNFs) as Contrast Agents for Photon-Counting Computed Tomography (PCCT)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

2–3 nm Gd2O3 nanoparticles deposited on carbon nanoflakes were prepared. These are new contrast agents for photon-counting computed tomography based on detectors allowing counting of separate photons. Contrast agents of the Gd2O3@C core–shell structure were prepared by graphitization of the surface of these particles. The Gd2O3 and Gd2O3@C nanoparticles obtained, aqueous solution of Gd(NO3)3·6H2O, and a dispersion of 300–500 nm Gd2O3 particles in gelatin were studied by photon-counting computed tomography. At equal gadolinium concentrations, the highest X-ray absorption was noted for Gd(NO3)3·6H2O and Gd2O3, which is associated with higher density of these samples. Carbon in the contrast agents does not affect the absorption. An algorithm was developed for semiquantitative determination of gadolinium by photon-counting computed tomography.

About the authors

D. A. Shashurin

Faculty of Basic Medicine, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

E. V. Suslova

Faculty of Basic Medicine, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

V. A. Rozhkov

International Intergovernmental Organisation “Joint Institute for Nuclear Research,

Email: acjournal.nauka.nw@yandex.ru
Dubna, 141980, Moscow oblast, Russia

R. V. Sotenskiy

International Intergovernmental Organisation “Joint Institute for Nuclear Research,

Email: acjournal.nauka.nw@yandex.ru
Dubna, 141980, Moscow oblast, Russia

O. S. Medvedev

Faculty of Basic Medicine, Moscow State University

Email: acjournal.nauka.nw@yandex.ru
119991, Moscow, Russia

G. A. Shelkov

International Intergovernmental Organisation “Joint Institute for Nuclear Research,

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
Dubna, 141980, Moscow oblast, Russia

References

  1. Gomes M. J., Jaseemudheen M. M. Photon-counting detectors in computed tomography: A Review //j. Health Allied Sci. 2023. V. 13 (02). P. 147-152. https://doi.org/10.1055/s-0042-1749180
  2. Kim J., Bar-Ness D., Si-Mohamed S., Coulon P., Blevis I., Douek P., Cormode D. P. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents // Sci. Rep. 2018. V. 8. ID 12119. https://doi.org/10.1038/s41598-018-30570-y
  3. Suslova E. V., Kozlov A. P., Shashurin D. A., Rozhkov V. A., Sotenskii R. V., Maximov S. V., Savilov S. V., Medvedev O. S., Chelkov G. A. New composite contrast agents based on Ln and graphene matrix for multi-energy computed tomography // Nanomaterials. 2022. V. 12. ID 4110. https://doi.org/10.3390/nano12234110
  4. Suslova E., Shashurin D., Kozlov A., Maximov S., Rozhkov V., Sotenskii R., Savilov S., Medvedev O., Chelkov G. Development of La-graphene composite contrasting agents for photon-counting computed tomography // Func. Mater. Lett. 2022. V. 15 (7). ID 2250029. https://doi.org/10.1142/S1793604722500291
  5. Levine D., McDonald R. J., Kressel H. Y. Gadolinium retention after contrast-enhanced MRI // JAMA 2018. V. 320 (18). P. 1853-1854. https://doi.org/10.1001/jama.2018.13362
  6. Russo M., Ponsiglione A. M., Forte E., Netti P. A., Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles // Nanomedicine. 2017. V. 12 (18). P. 2199-2210. https://doi.org/10.2217/nnm-2017-0098
  7. Morimoto H., Minato M., Nakagawa T., Sato M., Kobayashi Y., Gonda K., Takeda M., Ohuchi N., Suzuki N. X-ray imaging of newly-developed gadolinium compound/silica core-shell particles //j. Sol. Gel. Sci. Technol. 2011. V. 59. P. 650-657. https://doi.org/10.1007/s10971-011-2540-6
  8. Fatima A., Ahmad M. W., Al Saidi A. K. A., Choudhury A., Chang Y., Lee G. H. Recent advances in gadolinium based contrast agents for bioimaging applications // Nanomaterials. 2021. V. 11 (9). ID 2449. https://doi.org/10.3390/nano11092449
  9. Bouzas-Ramos D., Canga K. C., Mayo J. C. Sainz R. M., Encinar J. R., Costa-Fernandez J. M. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging // Adv. Funct. Mater. 2019. V. 29. ID 1903884. https://doi.org/10.1002/adfm.201903884
  10. Tian G., Yin W., Jin J., Zhang X., Xing G., Li S., Gu Z., Zhao Y. Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs //j. Mater. Chem. B. 2014. V. 2. P. 1379-1389. https://doi.org/10.1039/C3TB21394C
  11. Savilov S. V., Strokova N. E., Ivanov A. S., Arkhipova E. A., Desyatov A. V., Hui X., Aldoshin S. M., Lunin V. V. Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors // Mater. Res. Bull. 2015. V. 69. P. 13-19. https://doi.org/10.1016/j.materresbull.2015.01.001
  12. Столбов Д. Н., Черняк С. А., Маслаков К. И., Кузнецова Н. Н., Савилов С. В. Пиролитический синтез малослойных графитовых фрагментов, допированных азотом и кремнием // Изв. АН. Сер. хим. 2022. № 4. C. 680-685. https://www.elibrary.ru/jdxsxa
  13. Kozlov A., Suslova E., Maksimov S., Isaikina O., Maslakov K., Shashurin D., Savilov S., Shelkov G. The preparation of nanocomposite with a core-shell structure made of carbon matrices and lanthanum nanoparticles // Phys. Part. Nucl. Lett. 2023 V. 20. P. 1254-1258. https://doi.org/10.1134/S1547477123050473
  14. Park S. E., Kim J. G., Hegazy M. A. A., Cho M. H., Lee S. Y. A Flat-field correction method for multi energy detector based micro-CT. In Proceedings of the medical imaging 2014: Physics of medical imaging / Eds B. R. Whiting, C. Hoeschen. SPIE Medical Imaging: San-Diego, CA, USA, 2014. ID 90335N. https://doi.org/10.1117/12.2043317
  15. Кочубей Д. И., Канажевский В. В. Рентгеновская спектроскопия поглощения - инструмент для исследования и создания новых материалов // Химия в интересах устойчив. развития. 2013. Т. 21 (1). С. 21-36. https://www.elibrary.ru/xqgfxn
  16. Вацюк А. В., Ингачева А. С., Чукалина М. В. Алгебраические методы реконструкции в задачах томографии // Сенсорные системы. 2018. Т. 32 (1). С. 83-91. https://doi.org/10.7868/S0235009218010122

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies