Low-Temperature Composite CO2 Sorbents Based on Amine-Containing Compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The use of technologies based on combustion of carbon-containing fossil fuel leads to emission of large amounts of CO2, one of the main greenhouse gases, into the atmosphere. To reduce the CO2 level in the atmosphere, systems for CO2 sorption from various gas sources are being developed. The systems allowing the CO2 sorption and desorption at low temperatures (25–200°С) are of most interest. Most frequently, such systems are composite materials consisting of a porous support and a CO2 chemisorbent dispersed on it. Low-volatile amine-containing compounds are the most promising among organic chemisorbents. Classification of the amine-containing sorbents with respect to the preparation procedure is discussed. The procedures include impregnation, covalent grafting, and in situ polymerization on the support surface. The impregnation procedure is simple and cheap in implementation. The sorption characteristics of materials prepared by impregnation depend on the efficiency of the dispersion of the active component, which is determined by the characteristics of the support pore structure, in particular, by the ability of the pore surface for chemical or electrostatic interaction with the supported amine-containing compound. The covalent grafting is based on immobilization of alkoxyaminosilanes on the surface of porous silica materials. The supports for implementing this approach should contain a large amount of silanol groups on the surface and should have the pore size sufficient for the efficient transport of CO2 molecules to amino groups. The main drawback of the grafting method is low thickness of the amine-containing component layers obtained. In situ polymerization is used for preparing materials with high content of grafted functional groups. Provided that the blocking of support pores is excluded in the course of in situ polymerization, materials of this type exhibit the highest sorption capacity for CO2.

About the authors

A. Zh. Sheshkovas

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciencesж Novosibirsk State University

Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

Zh. V. Veselovskaya

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia

D. S. Selishchev

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia

D. V. Kozlov

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru
630090, Novosibirsk, Russia

References

  1. Madejski P., Chmiel K., Subramanian N., Kuś T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies // Energies 2022. V. 15. N 3. ID 887. https://doi.org/10.3390/en15030887
  2. Оковитая К. О., Суржко О. А. Аналитический обзор получения и использования биогаза // Инж. вестник Дона. 2017. № 4. http://www.ivdon.ru/ru/magazine/ archive/n4y2017/4618
  3. Yaumi A. L., Bakar M. A., Hameed B. H. Recent advances in functionalized composite solid materials for carbon dioxide capture // Energy. 2017. V. 124. P. 461- 480. https://doi.org/10.1016/j.energy.2017.02.053
  4. Leuenberger M., Nyfeler P., Moret H. P., Sturm P., Indermühle A., Schwander J. CO2 concentration measurements on air samples by mass spectrometry // Rapid Commun. Mass. Spectrom. 2000. V. 14. N 16. P. 1552-1557. https://doi.org/10.1002/1097- 0231(20000830)14:16%3C1552::AID- RCM63%3E3.0.CO;2-C
  5. Wernera A., Beharb F., de Hemptinnea J. C., Behara E. Viscosity and phase behaviour of petroleum fluids with high asphaltene contents // Fluid Phase Equilib. 1998. V. 147. N 1-2. P. 343-356. https://doi.org/10.1016/S0378-3812(98)00245-3
  6. Raventos M., Duarte S., Alarcon R. Application and possibilities of supercritical CO2 extraction in food processing industry: An Overview // Food Sci. Tech.Int. 2002. V. 8. N 5. P. 269-284. https://doi.org/10.1106/108201302029451
  7. Mazzotti M., Abanades J. C., Allam R., Lackner K. S., Meunier F., Rubin E., Sanchez J. C., Yogo K., Zevenhoven R. Mineral carbonation and industrial uses of carbon dioxide // IPCC special report on carbon dioxide capture and storage. Cambridge University Press, 2005. P. 321-337.
  8. Минигулов Ф. Г., Пресняков В. В., Шигабутдинов А. К., Сафин Д. Х., Пресняков А. В., Валитов А. Р., Сафин А. Ф. Некоторые особенности экологически безопасной "бесфосгенной" технологии производства поликарбонатов // Пласт. массы. 2020. Т. 5-6. С. 45-47. https://doi.org/10.35164/0554-2901-2020-5-6-45-47
  9. Girotto S., Minetto S., Neksa P.Commercial refrigeration system using CO2 as the refrigerant // Int. J. Refrig. 2004. V. 27. N 7. P. 717-723. https://doi.org/10.1016/j.ijrefrig.2004.07.004
  10. Osborne C. P., Beerling D. J. Sensitivity of tree growth to a high CO2 environment: Consequences for interpreting the characteristics of fossil woods from ancient "greenhouse" worlds Palaeogeography, Palaeoclimatology // Palaeoecology. 2002. V. 182. N 1-2. P. 15-29. https://doi.org/10.1016/S0031-0182(01)00450-3
  11. Woodward F. I. Potential impacts of global elevated CO2 concentrations on plants: A Review // Curr. Opin. Plant Biol. 2002. V. 5. N 3. P. 207-211. https://doi.org/10.1016/S1369-5266(02)00253-4
  12. Centi G., Quadrelli E. A., Perathoner S. Catalysis for CO2 conversion: A Key technology for rapid introduction of renewable еnergy in the value chain of chemical industries // Energy Environ. Sci. 2013. V. 6. P. 1711-1731. https://doi.org/10.1039/C3EE00056G
  13. Saeidi S., Najari S., Fazlollahi F., Nikoo M. K., Sefidkon F., Klemes J. J., Baxter L. L. Mechanisms and kinetics of CO2 hydrogenation to value-added products: A Detailed review on current status and future trends // Renew. Sust. Energy Rev. 2017. V. 80. P. 1292-1311. https://doi.org/10.1016/j.rser.2017.05.204
  14. Koytsoumpa E. I., Bergins C., Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies //j. Supercrit. Fluids. 2018. 132. P. 3-16. https://doi.org/10.1016/j.supflu.2017.07.029
  15. Tursunov O., Kustov L., Kustov A. A Brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts // Oil Gas Sci. Technol. - Rev. dʹIFP Energies Nouvelles. 2017. V. 72. ID 30. https://doi.org/10.2516/ogst/2017027
  16. Кузьмин А. В., Шаинян Б. А. Механизмы реакций каталитического электрохимического восстановления кислорода (ORR) и углекислого газа (CO2RR) // Успехи химии. 2023. Т. 92. № 6. ID 5085. https://doi.org/10.59761/RCR5085
  17. Wang J., Huang L., Yang R., Zhang Z., Wu J., Gao Y., Wang Q., OʹHare D., Zhong Z. Recent advances in solid sorbents for CO2 capture and new development trends // Energy Environ. Sci. 2014. V. 7. N 11. P. 3478-3518. https://doi.org/10.1039/C4EE01647E
  18. Sanz-Perez E. S., Murdock C. R., Didas S. A., Jones C. W. Direct capture of CO2 from ambient air // Chem. Rev. 2016. V. 116. N 19. P. 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173
  19. Shi X., Xiao H., Azarabadi H., Song J., Wu X., Chen X., Lackner K. S. Sorbents for the direct capture of CO2 from ambient air // Angew. Chem.Int. Ed. 2020. V. 59. N 18. P. 6984-7006. https://doi.org/10.1002/anie.201906756
  20. Park Y., Lin K. Y. A., Park A. H. A., Petit C. Recent advances in anhydrous solvents for CO2 capture: Ionic liquids, switchable solvents, and nanoparticle organic hybrid materials //Frontiers in Energy Research. 2015. V. 3. ID 42. https://doi.org/10.3389/fenrg.2015.00042
  21. Meng F., Meng Y., Ju T., Han S., Lin L., Jiang J. Research progress of aqueous amine solution for CO2 capture: A Review // Renew. Sust. Energy Rev. 2022. V. 168. ID 112902. https://doi.org/10.1016/j.rser.2022.112902
  22. Черникова Е. А., Глухов Л. М., Кустов Л. М., Красовский В. Г., Белецкая И. П. Мезо- и макропористые материалы, модифицированные аминами, для хранения CO2 // ЖОрХ. 2014. Т. 50. № 11. С. 1572-1573. https://www.elibrary.ru/sxtwmz
  23. Черникова Е. А., Глухов Л. М., Кустов Л. М., Красовский В. Г. Адсорбенты CO2 на основе пористых материалов, модифицированных аминами // Изв. АН. Сер. хим. 2015. № 12. С. 2958-2962. https://www.elibrary.ru/vceued
  24. Lee S. C., Kim J. C. Dry potassium-based sorbents for CO2 capture // Catalysis Surveys from Asia. 2007. V. 11. P. 171-185. https://doi.org/10.1007/s10563-007-9035-z
  25. Zhao C. Chen X., Anthony E. J., Jiang X., Duan L., Wu Y., Dong W., Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent // Prog. Energy Combust. Sci. 2013. V. 39. N 6. P. 515-534. https://doi.org/10.1016/j.pecs.2013.05.001
  26. Gao W., Zhou T., Gao Y., Louis B., OʹHare D., Wang Q. Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A Review //j. Energy Chem. 2017. V. 26. N 5. P. 830-838. https://doi.org/10.1016/j.jechem.2017.06.005
  27. Hu Y., Guo Y., Sun J., Li H., Liu W. Progress in MgO sorbents for cyclic CO2 capture: A Comprehensive review //j. Mater. Chem. A. 2019. V. 7. N 35. P. 20103-20120. https://doi.org/10.1039/C9TA06930E
  28. Ruhaimi A. H., Aziz M. A. A., Jalil A. A. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities //j. CO2 Util. 2021. V. 43. ID 101357. https://doi.org/10.1016/j.jcou.2020.101357
  29. Портякова И. С., Антипов А. В., Мишин И. В., Кустов Л. М. Адсорбенты SO2, нанесенные на карбид кремния // ЖФХ. 2020. Т. 94. № 7. С. 1105-1113. https://doi.org/10.31857/S0044453720070237
  30. Sun H., Wu C., Shen B., Zhang X., Zhang Y., Huang J. Progress in the development and application of CaO-based adsorbents for CO2 capture - a review // Mater. Today Sust. 2018. V. 1-2. P. 1-27. https://doi.org/10.1016/j.mtsust.2018.08.001
  31. Kierzkowska A. M., Pacciani R., Müller C. R. CaO- based CO2 sorbents: From fundamentals to the development of new, highly effective materials // ChemSusChem. 2013. V. 6. N 7. P. 1130-1148. https://doi.org/10.1002/cssc.201300178
  32. Wang Y., Memon M. Z., Seelro M. A., F W., Gao Y., Dong Y., Ji G. A Review of CO2 sorbents for promoting hydrogen production in the sorption- enhanced steam reforming process // Int. J. Hydrogen Energy. 2021. V. 46. N 45. P. 23358-23379. https://doi.org/10.1016/j.ijhydene.2021.01.206
  33. Грейш А. А., Кустов А. Л., Соколовский П. В. Наноразмерные адсорбенты диоксида углерода // ЖФХ. 2021. Т. 95. № 8. С. 1232-1236. https://doi.org/10.31857/S0044453721080112
  34. Okunev A. G., Sharonov V. E., Aristov Y. I., Parmon V. N. Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix: Influence of the matrix nature // React. Kinet. Catal. Lett. 2000. V. 71. P. 355-362. https://doi.org/10.1023/A:1010395630719
  35. Park Y. C., Jo S. H., Kim J. Y., Won Y., Nam H., Yi C. K., Eom T. H., Lee J. B. Carbon dioxide capture from a real coal-fired flue gas using K-based solid sorbents in a 0.5 MWe-scale test-bed facility // Int. J. Greenh. Gas Control. 2020. V. 103. P. 103192. https://doi.org/10.1016/j.ijggc.2020.103192
  36. Kim K., Yang S., Lee J. B., Eom T. H., Ryu C. K., Lee H. J., Bae T. S., Lee S. J. A Long-term test of a new CO2 sorbent (KEP-CO2P2) in a 0.5 MWe CO2 capture test bed // Korean J. Chem. Eng. 2015. V. 32. P. 677-684. https://doi.org/10.1007/s11814-014-0297-7
  37. Park Y. C., Jo S. H., Ryu C. K., Yi C. K. Demonstration of pilot scale carbon dioxide capture system using dry regenerable sorbents to the real coal-fired power plant in Korea // Energy Procedia. 2011. V. 4. P. 1508-1512. https://doi.org/10.1016/j.egypro.2011.02.018
  38. Park Y. C., Jo S. H., Lee D. H., Yi C. K., Ryu C. K., Kim K. S., You C. H., Park K. S. The status of the development project for the 10 MWe-scale dry-sorbent carbon dioxide capture system to the real coal-fired power plant in Korea // Energy Procedia. 2013. V. 37. P. 122-126. https://doi.org/10.1016/j.egypro.2013.05.092
  39. Park Y. C., Jo S. H., Kyung D. H., Kim J. Y., Yi C. K., Ryu C. K., Shin M. S. Test operation results of the 10 MWe-scale dry-sorbent CO2 capture process integrated with a real coal-fired power plant in Korea // Energy Procedia. 2014. V. 63. P. 2261-2265. https://doi.org/10.1016/j.egypro.2014.11.245
  40. Won Y., Kim J. Y., Park Y. C., Yi C. K., Nam H., Woo J. M., Jin G. T., Park J., Lee S. Y., Jo S. H. Post- combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: The Optimization of regeneration condition // Energy. 2020. V. 208. P. 118188. https://doi.org/10.1016/j.energy.2020.118188
  41. Luo P. C., Zhang Z. B., Jiao Z., Wang Z. X. Investigation in the design of a CO2 cleaner system by using aqueous solutions of monoethanolamine and diethanolamine // Ind. Eng. Chem. Res. 2003. V. 42. P. 4861-4866. https://doi.org/10.1021/ie030029m
  42. Wallace J., Krumdieck S. Carbon dioxide scrubbing from air for alkaline fuel cells using amine solution in a packed bubble column // Proc. Inst. Mech. Eng. Sci. Part C: J. Mech. Eng. Sci. 2005. V. 219. P. 1225-1233. https://doi.org/10.1243/095440605X32011
  43. Cheng H. H., Tan C. S. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed // Sep. Purif. Technol. 2011. V. 82. P. 156-166. https://doi.org/10.1016/j.seppur.2011.09.004
  44. Gale J. A global perspective on the Status of carbon capture / 2016 NETL CO2 Capture Technology Project Meeting. 2016. Pittsburgh, USA. https://netl.doe.gov/ sites/default/files/event-proceedings/2016/c02%20 cap%20review/1-Monday/J-Gale-IEAGG-Status-of- Carbon-Capture.pdf
  45. Just P. E. Advances in the development of CO2 capture solvents // Energy Procedia. 2013. V. 37. P. 314-324. https://doi.org/10.1016/j.egypro.2013.05.117
  46. Buvik V., Høisæter K. K., Vevelstad S. J., Knuutila H. K. A Review of degradation and emissions in post- combustion CO2 capture pilot plants // Int. J. Greenh. Gas Control. 2021. V. 106. ID 103246. https://doi.org/10.1016/j.ijggc.2020.103246
  47. Баженов С. Д., Новицкий Е. Г., Василевский В. П., Грушевенко Е. А., Бьянко А. А., Волков А. В. Термостабильные соли и способы их удаления из алканоламиновых поглотителей диоксида углерода // ЖПХ. 2019. Т. 92. № 8. С. 957-979. https://doi.org/10.1134/S0044461819080024
  48. Park I. I. H., Choi E. J. Characterization of branched polyethyleneimine by laser light scattering and viscometry // Polymer. 1996. V. 37. N 2. P. 313-319. https://doi.org/10.1016/0032-3861(96)81104-9
  49. Chen F. F., Huang K., Fan J. P., Tao D. J. Chemical solvent in chemical solvent: A Class of hybrid materials for effective capture of CO2 //AIChE J. 2018. V. 64. N 2. P. 632-639. https://doi.org/10.1002/aic.15952
  50. Wu T. Y., Wang H. C., Su S. G., Gung S. T., Lin M. W., Lin C. B. Characterization of ionic conductivity, viscosity, density, and self-diffusion coefficient for binary mixtures of polyethyleneglycol (or polyethyleneimine) organic solvent with room temperature ionic liquid BMIBF4 (or BMIPF6) //j. Taiwan Inst. Chem. Eng. 2010. V. 41. N 3. P. 315-325. https://doi.org/10.1016/j.jtice.2009.10.003
  51. Satyapal S., Filburn T., Trela J., Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications // Energy Fuel. 2001. V. 15. N 2. P. 250- 255. https://doi.org/10.1021/ef0002391
  52. Caplow M. Kinetics of carbamate formation and breakdown //j. Am. Chem. Soc. 1968. V. 90. N 24. P. 6795-6803. https://doi.org/10.1021/ja01026a041 Danckwerts P. V. The reaction of CO2 with ethanolamines // Chem. Eng. Sci. 1979. V. 34. N 4. P. 443-446. https://doi.org/10.1016/0009-2509(79)85087-3
  53. Crooks J. E., Donnellan J. P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution //j. Chem. Soc. Perkin Trans. 2. 1989. V. 4. P. 331-333. https://doi.org/10.1039/P29890000331
  54. Yang Z.-Z., He L. N., Zhao Y. N., Li B., Yu B. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion // Energy Environ. Sci. 2011. V. 4. N 10. P. 3971-3975. https://doi.org/10.1039/C1EE02156G
  55. Bollini P., Didas S. A., Jones C. W. Amine-oxide hybrid materials for acid gas separations //j. Mater. Chem. 2011. V. 39. N 21. P. 15100-15120. https://doi.org/10.1039/C1JM12522B
  56. Goeppert A., Czaun M., Prakash G. S., Olah G. A. Air as the renewable carbon source of the future: An Overview of CO2 capture from the atmosphere // Energy Environ. Sci. 2012. V. 5. N 7. P. 7833-7853. https://doi.org/10.1039/C2EE21586A
  57. Gelles T., Lawson S., Rownaghi A. A., Rezaei F. Recent advances in development of amine functionalized adsorbents for CO2 capture // Adsorption. 2020. V. 26. P. 5-50. https://doi.org/10.1007/s10450-019-00151-0
  58. Иоффе И. И., Письмен Л. М. Инженерная химия гетерогенного катализа. М.: Химия, 1965. C. 300- 338.
  59. Xu X., Song C., Andresen J. M., Miller B. G., Scaroni A. W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high- capacity adsorbent for CO2 capture // Energy Fuel. 2002. V. 16. N 6. P. 1463-1469. https://doi.org/10.1021/ef020058u
  60. Wang X. Schwartz V., Clark J. C., Ma X., Overbury S. H., Xu X., Song C. Infrared study of CO2 sorption over "molecular basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve //j. Phys. Chem. C. 2009. V. 113. N 17. P. 7260- 7268. https://doi.org/10.1021/jp809946y
  61. Son W. J., Choi J. S., Ahn W. S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials // Micropor. Mesopor. Mater. 2008. V. 113. N 1-3. P. 31-40. https://doi.org/10.1016/j.micromeso.2007.10.049
  62. Chen C., Yang S. T., Ahn W. S., Ryoo R. Amine- impregnated silica monolith with a hierarchical pore structure: Enhancement of CO2 capture capacity // Chem.Commun. 2009. N 24. P. 3627-3629. https://doi.org/10.1039/B905589D
  63. Jung W., Lee J. Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent // Energy 2022. V. 238. ID 121864. https://doi.org/10.1016/j.energy.2021.121864
  64. Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H. CO2 capture by as-prepared SBA-15 with an occluded organic template // Adv. Funct. Mater. 2006. V. 16. N 13. P. 1717-1722. https://doi.org/10.1002/adfm.200600427
  65. Yue M. B., Sun L. B., Cao Y., Wang Y., Wang Z. J., Zhu J. H. Efficient CO2 capturer derived from as- synthesized MCM-41 modified with amine // Chem. Eur. J. 2008. V. 14. N 11. P. 3442-3451. https://doi.org/10.1002/chem.200701467
  66. Chen C., Kim J., Ahn W. S. CO2 capture by amine- functionalized nanoporous materials: A Review // Korean J. Chem. Eng. 2014. V. 31. P. 1919-1934. https://doi.org/10.1007/s11814-014-0257-2
  67. Hicks J. C., Drese J. H., Fauth D. J., Gray M. L., Qi G., Jones C. W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly //j. Am. Chem. Soc. 2008. V. 130. N 10. P. 2902-2903. https://doi.org/10.1021/ja077795v
  68. Shen X., Yan F., Li C., Qu F., Wang Y., Zhang Z. Biogas upgrading via cyclic CO2 adsorption: Application of highly regenerable PEI@nano-Al2O3 adsorbents with anti-urea properties // Environ. Sci. Tech. 2021. V. 55. N 8. P. 5236-5247. https://doi.org/10.1021/acs.est.0c07973
  69. Palkovits R., Yang C. M., Olejnik S., Schüth F. Active sites on SBA-15 in the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam //j. Catal. 2006. V. 243. N 1. P. 93-98. https://doi.org/10.1016/j.jcat.2006.07.004
  70. Wan M. M., Zhu H. Y., Li Y. Y., Ma J., Liu S., Zhu J. H. Novel CO2-capture derived from the basic ionic liquids orientated on mesoporous materials // ACS Appl. Mater.Interf. 2014. V. 6. N 15. P. 12947-12955. https://doi.org/10.1021/am5028814
  71. Iyer K. S., Luzinov I. Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting // Macromolecules. 2004. V. 37. N 25. P. 9538-9545. https://doi.org/10.1021/ma0493168
  72. Karim A., Tsukruk V. V., Douglas J. F., Satija S. K., Fetters L. J., Reneker D. H., Foster M. D. Self- organization of polymer brush layers in a poor solvent //j. Phys. II. 1995. V. 5. N 10. P. 1441-1456. https://doi.org/10.1051/jp2:1995193
  73. Taylor W., Jones R. A. L. Producing high-density high- molecular-weight polymer brushes by a "grafting to" method from a concentrated homopolymer solution // Langmuir. 2010. V. 26. N 17. P. 13954-13958. https://doi.org/10.1021/la101881j
  74. Pat. US 5087597 (publ. 1992). Carbon dioxide adsorbent and method for producing the adsorbent.
  75. Leal O., Bolívar C., Ovalles C., García J. J., Espidel Y. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel // Inorg. Chim. Acta. 1995. V. 240. N 1. P. 183-189. https://doi.org/10.1016/0020-1693(95)04534-1
  76. Harlick P. J. E., Sayari A. Applications of pore- expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance // Ind. Eng. Chem. Res. 2007. V. 46. N 2. P. 446-458. https://doi.org/10.1021/ie060774+
  77. Harlick P.J. E., Sayari A. Applications of pore- expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption // Ind. Eng. Chem. Res. 2006. V. 45. N 9. P. 3248-3255. https://doi.org/10.1021/ie051286p
  78. Chang F.-Y., Chao K. J., Cheng H. H., Tan C. S. Adsorption of CO2 onto amine-grafted mesoporous silicas // Sep. Purif. Tech. 2009. V. 70. N 1. P. 87-95. https://doi.org/10.1016/j.seppur.2009.08.016
  79. Huang H. Y., Yang R. T., Chinn D., Munson C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas // Ind. Eng. Chem. Res. 2003. V. 42. N 12. P. 2427-2433. https://doi.org/10.1021/ie020440u
  80. Feng X., Fryxell G. E., Wang L. Q., Kim A. Y., Liu J., Kemner K. M. Functionalized monolayers on ordered mesoporous supports // Science. 1997. V. 276. N 5314. P. 923-926. https://doi.org/10.1126/science.276.5314.923
  81. Qi G., Fu L., Giannelis E. P. Sponges with covalently tethered amines for high-efficiency carbon capture // Nature Commun. 2014. V. 5. N 1. ID 5796. https://doi.org/10.1038/ncomms6796
  82. Kim H. J., Moon J. H., Park J. W. A Hyperbranched poly(ethyleneimine) grown on surfaces //j. Colloid Interf. Sci. 2000. V. 227. N 1. P. 247-249. https://doi.org/10.1006/jcis.2000.6861
  83. Yang Y., Li H., Chen S., Zhao Y., Li Q. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber //Langmuir. 2010. V. 26. N 17. P. 13897-13902. https://doi.org/10.1021/la101281v

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies