Microstructure and Thermal and Rheological Properties of Low-Molecular-Mass Ethylene–Vinyl Acetate Copolymer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure of low-molecular-mass ethylene–vinyl acetate copolymers was studied by 1Н and 13С NMR spectroscopy. The vinyl acetate mole fraction, chain branching, and mean lengths of ethylene and vinyl acetate blocks were determined. The thermal properties of ethylene–vinyl acetate copolymers were studied by differential scanning calorimetry and thermogravimetric analysis, and the crystalline characteristics, by X-ray diffraction analysis. The degree of crystallinity of the copolymer decreases with an increase in the fraction of the polar comonomer. Rheological studies show that ethylene–vinyl acetate copolymers at room temperature tend to microphase segregation and form a microphase structural network.

About the authors

A. A. Morontsev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

G. O. Karpov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

S. O. Il'in

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

K. I. Dement'ev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Email: acjournal.nauka.nw@yandex.ru

M. V. Bermeshev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia

Author for correspondence.
Email: acjournal.nauka.nw@yandex.ru

References

  1. Alothman O. Y. Processing and characterization of high density polyethylene/ethylene vinyl acetate blends with different va contents // Adv. Mater. Sci. Eng. 2012. V. 2012. P. 1-10. https://doi.org/10.1155/2012/635693
  2. Birajdar R. S., Chikkali S. H. Insertion copolymerization of functional olefins: Quo Vadis? // Eur. Polym. J. 2021. V. 143. ID 110183. https://doi.org/10.1016/j.eurpolymj.2020.110183
  3. Zarrouki A., Espinosa E., Boisson C., Monteil V. Free radical copolymerization of ethylene with vinyl acetate under mild conditions // Macromolecules. 2017. V. 50. N 9. P. 3516-3523. https://doi.org/10.1021/acs.macromol.6b02756
  4. Aggarwal S. L., Sweeting O. J. Polyethylene: Preparation, structure, and properties // Chem. Rev. 1957. V. 57. N 4. P. 665-742. https://doi.org/10.1021/cr50016a004
  5. Ghiass M., Hutchinson R. A. Simulation of free radical high-pressure copolymerization in a multizone autoclave: Model development and application // Polym. React. Eng. 2003. V. 11. N 4. P. 989-1015. https://doi.org/10.1081/PRE-120026882
  6. Костюк А. В., Смирнова Н. М., Антонов С. В., Ильин С. О. Реологические и адгезионные свойства клеев-расплавов на основе нефтеполимерных смол и полиэтиленвинилацетата // Высокомулекуляр. соединения. Сер. А. 2021. Т. 63. № 3. С. 184-197. https://doi.org/10.31857/S2308112021030081
  7. Choi S.-S., Chung Y. Y. Simple analytical method for determination of microstructures of poly(ethylene-covinyl acetate) using the melting points // Polym. Test. 2020. V. 90. ID 106706. https://doi.org/10.1016/j.polymertesting.2020.106706
  8. McKennell R. Cone-plate viscometer // Anal. Chem. 1956. V. 28. N 11. P. 1710-1714. https://doi.org/10.1021/ac60119a021
  9. Demarteau J., Scholten P. B. V., Kermagoret A., Winter J. D., Meier M. A. R., Monteil V., Debuigne A., Detrembleur C. Functional polyethylene (PE) and pebased block copolymers by organometallic-mediated radical polymerization // Macromolecules. 2019. V. 52. N 22. P. 9053-9063. https://doi.org/10.1021/acs.macromol.9b01741
  10. Naga N., Kikuchi G., Toyota A. Synthesis and crystalline structure of polyethylene containing 1,3-cylopentane units in the main chain by ring-opening metathesis copolymerization of cycloolefins following hydrogenation reaction // Polymer (Guildf). 2006. V. 47. N 17. P. 6081-6090. https://doi.org/10.1016/j.polymer.2006.06.015
  11. Ilyin S. O., Malkin A. Ya., Kulichikhin V. G., Denisova Yu. I., Krentsel L. B., Shandryuk G. A., Litmanovich A. D., Litmanovich E. A., Bondarenko G. N., Kudryavtsev Ya. V. Effect of chain structure on the rheological properties of vinyl acetate-vinyl alcohol copolymers in solution and bulk // Macromolecules. 2014. V. 47. N 14. P. 4790-4804. https://doi.org/10.1021/ma5003326
  12. Gorbacheva S. N., Yadykova A. Y., Ilyin S. O. Rheological and tribological properties of low-temperature greases based on cellulose acetate butyrate gel // Carbohydr. Polym. 2021. V. 272. ID 118509. https://doi.org/10.1016/j.carbpol.2021.118509
  13. Gorbacheva S. N., Yarmush Y. M., Ilyin S. O. Rheology and tribology of ester-based greases with microcrystalline cellulose and organomodified montmorillonite //Tribol.Int. 2020. V. 148. ID 106318. https://doi.org/10.1016/j.triboint.2020.106318

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies