Preparation, Structure, and Properties of Chitosan Microtubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Procedures were developed for forming hollow cylindrical structures with the wall thickness in the micrometer range (microtubes) from chitosan solutions in citric, lactic, and glycolic acids. The procedures are based on the phase-transfer neutralization induced by the transport of ions (hereinafter, ion-induced reaction), occurring at the liquid–liquid or solid–liquid interface, namely, on the polymer-analogous conversion of the salt form of the polymer to the base form in a NaOH or triethanolamine medium or formation of a water-insoluble polyelectrolyte complex with sodium dodecylbenzenesulfonate. Comparative analysis of the dependences of the morphological, structural, elastoplastic, physicomechanical, and biological properties of the structures on the reaction conditions and kind of the organic acid and neutralizing agent was made. The microtubes prepared from a chitosan solution in glycolic acid by ion-induced neutralization at the solid–liquid interface in a NaOH or triethanolamine medium exhibit the optimum levels of strength and elasticity, comparable with those of a fragment of human carotid artery and xenopericardial patch. The hemo- and biocompatibility and controlled biodegradation of these materials make them promising as analogs of biodegradable blood vessel implants.

Sobre autores

A. Shipovskaya

Chernyshevsky Saratov State University, 410012, Saratov, Russia

Email: acjournal.nauka.nw@yandex.ru

N. Gegel'

Chernyshevsky Saratov State University, 410012, Saratov, Russia

Email: acjournal.nauka.nw@yandex.ru

T. Babicheva

Chernyshevsky Saratov State University, 410012, Saratov, Russia

Email: acjournal.nauka.nw@yandex.ru

A. Golyadkina

Chernyshevsky Saratov State University, 410012, Saratov, Russia

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru

Bibliografia

  1. Wang J., Zhuang S. Chitosan-based materials: Preparation, modification and application //j. Clean. Prod. 2022. V. 355. ID 31825. https://doi.org/10.1016/j.jclepro.2022.131825
  2. Rinaudo M. Chitin and chitosan: Properties and applications // Progress Polym. Sci. 2006. V. 31. N 7. P. 603-632. https://dx.doi.org/10.1016/j. progpolymsci.2006.06.001
  3. Мударисова Р. Х., Кулиш Е. И., Зинатуллин P. M., Таминдарова Н. Э., Колесов С. В., Хунафин С. Н., Монаков Ю. Б. Пленки комплексов на основе хитозана с контролируемым высвобождением левомицетина // ЖПХ. 2006. Т. 79. № 10. С. 1737-1739. EDN: HVKFJH
  4. Li X., Tang J., Bao L., Chen L., Hong F. F. Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels // Carbohydr. Polym. 2017. V. 178. P. 394-405. https://doi.org/10.1016/j.carbpol.2017.08.120
  5. Yin K., Divakar P., Wegst U. G. K. Freeze-casting porous chitosan ureteral stents for improved drainage // Acta Biomater. 2019. V. 84. P. 231-241. https://doi.org/10.1016/j.actbio.2018.11.005
  6. Al Rez M. F., BinObaid A., Alghosen A., Mirza E., Alam J., Hashem M., Alsalman H., Almalak H. M., Mahmood A., Moussa I., Al-Jassir F. F. Tubular poly(ε-caprolactone)/chitosan nanofibrous scaffold prepared by electrospinning for vascular tissue engineering applications //j. Biomater. Tissue Eng. 2017. V. 7. P. 427-436. https://doi.org/10.1166/jbt.2017.1593
  7. Попрядухин П. В., Юкина Г. Ю., Суслов Д. Н., Добровольская И. П., Иванькова Е. Н., Юдин В. Е. Биорезорбция пористых 3D-материалов на основе хитозана // Цитология. 2016. Т. 58. № 10. P. 771- 777. EDN: XWRWWD
  8. Badhe R. V., Bijukumar D., Chejara D. R., Mabrouk M., Choonara Y. E., Kumar P., du Toit L. C., Kondiah P. P. D., Pillay V. A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering // Carbohydr. Polym. 2017. V. 157. P. 1215-1225. https://doi.org/10.1016/j.carbpol.2016.09.095
  9. Zhao X., Liu S., Han Y., Wang Y., Lin Q. Preparation of 5-fluorouracil loaded chitosan microtube via in situ precipitation for glaucoma drainage device application: in vitro and in vivo investigation //j. Biomater. Sci. Polym. Ed. 2021. V. 32. N 14. P. 1849-1864. https://doi.org/10.1080/09205063.2021.1946460
  10. Macêdo M. D. M., de Lucena B. M., de Cerqueira G. R. C., de Sousa W. J. B., Pedrosa T. C., Barbosa R. C., de Azevedo A. C. S., de Souza M. F., de Oliveira D. K. M., Fook M. V. L. Tubular chitosan device for use as prosthesis coating in vascular surgery // Res. Soc. Develop. [S. l.]. 2021. V. 10. N 4. P. e25610414031. https://doi.org/10.33448/rsd-v10i4.14031
  11. Neufurth M., Wang X., Tolba E., Dorweiler B., Schröder H. C., Link T., Diehl-Seifert B., Muller W. E. G. Modular small diameter vascular grafts with bioactive functionalities // PLoS ONE. 2015. V. 10. N 7. P. e0133632. https://doi.org/10.1371/journal.pone.0133632
  12. Beda A., Yamada H., Egunov A., Ghimbeu C. M., Malval J. P., Saito Y., Luchnikov V. Carbon microtubes derived from self-rolled chitosan acetate films and graphitized by joule heating //j. Mater. Sci. 2019. V. 54. N 16. P. 11345-11356. https://doi.org/10.1007/s10853-019-03675-6
  13. Lugovitskaya T. N., Shipovskaya A. B., Shmakov S. L., Shipenok X. M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles // Carbohydr. Polym. 2022. V. 277. ID 118773. https://doi.org/10.1016/j.carbpol.2021.118773
  14. Шиповская А. Б., Малинкина О. Н., Гегель Н. О., Зудина И. В., Луговицкая Т. Н. Структура и свойства солевых комплексов хитозана с диастереомерами аскорбиновой кислоты // Изв. АН. Сер. хим. 2021. № 9. С. 1765-1774. EDN: TVLXSM
  15. Babicheva T. S., Konduktorova A. A., Shmakov S. L., Shipovskaya A. B. Formation of Liesegang structures under the сonditions of the spatiotemporal reaction of polymer-analogous transformation (salt→base) of chitosan //j. Phys. Chem. B. 2020. V. 124. N 41. P. 9255-9266. https://doi.org/10.1021/acs.jpcb.0c07173
  16. Qiao C., Ma X., Wang X., Liu L. Structure and properties of chitosan films: Effect of the type of solvent acid // LWT. 2021. V. 135. ID 109984. https://doi.org/10.1016/j.lwt.2020.109984
  17. Melro E., Antunes F. E., da Silva G. J., Cruz I., Ramos P. E., Carvalho F., Alves L. Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions // Polymers. 2021. V. 13. N 1. ID 1. https://doi.org/10.3390/polym13010001
  18. Nie J., Lu W., Ma J., Yang L., Wang Z., Qin A., Hu Q. Orientation in multi-layer chitosan hydrogel: Morphology, mechanism and design principle // Sci. Reports. 2015. V. 5. N 1. P. 1-7. https://doi.org/10.1038/srep07635
  19. Li B., Gao Y., Feng Y., Ma B., Zhu R., Zhou Y. Formation of concentric multilayers in a chitosan hydrogel inspired by Liesegang ring phenomena //j. Biomater. Sci. Polym. Ed. 2011. V. 22. N 17. P. 2295- 2304. https://doi.org/10.1163/092050610X538425
  20. Babak V. G., Merkovich E. A., Galbraikh L. S., Shtykova E. V., Rinaudo M. Kinetics of diffusionally induced gelation and ordered nanostructure formation in surfactant-polyelectrolyte complexes formed at water/water emulsion type interfaces // Mendeleev Commun. 2000. V. 10. N 3. P. 94-95. https://doi.org/10.1070/MC2000v010n03ABEH001227
  21. Базунова М. В., Мустакимов Р. А., Бакирова Э. Р. О формировании устойчивых полиэлектролитных комплексов на основе N-сукцинила хитозана и поли-N,N-диаллил-N,N-диметиламмоний хлорида // ЖПХ. 2022. Т. 95. № 1. С. 42-48. https://doi.org/10.1134/S1070427222010062
  22. Gegel N. O., Shipovskaya A. B., Vdovykh L. S., Babicheva T. S. Preparation and properties of 3D chitosan microtubes //j. Soft Matter. 2014. V. 2014. ID 863096. http://dx.doi.org/10.1155/2014/863096
  23. Голядкина А. А, Иванов Д. В., Кириллова И. В., Коссович Е. Л., Павлова О. Е., Полиенко А. В., Сафонов Р. А. Биомеханика сонной артерии. Саратов: Саратовский источник, 2015. С. 70. EDN: VIKEJR
  24. Агеев Е. П., Вихорева Г. А., Зоткин М. А., Матушкина Н. Н., Герасимов В. И., Зезин С. Б., Оболонкова Е. С. Структура и транспортные свойства хитозановых пленок, модифицированных термообработкой // Высокомолекуляр. соединения. 2004. Т. 46А. № 12. С. 2035-2041. EDN: NEMWOV
  25. Shipovskaya A. B., Shmakov S. L., Gegel N. O. Optical activity anisotropy of chitosan-based films // Carbohydr. Polym. 2019. V. 206. Р. 476-486. https://doi.org/10.1016/j.carbpol.2018.11.026
  26. Жанкалова З. М. Показатели перекисного окисления липидов у больных с алкогольной болезнью печени // Медицина и экология. 2008. Т. 48. № 3. P. 31-33. https://qmu.edu.kz/media/qmudoc/Journal3-08.pdf
  27. Zhang L., Dou S., Li Y., Yuan Y., Ji Y., Wang Y., Yang Y. Degradation and compatibility behaviors of poly (glycolic acid) grafted chitosan // Mater. Sci. Eng. Part C. 2013. V. 33. N 5. P. 2626-2631. https://doi.org/10.1016/j.msec.2013.02.024
  28. Кулиш Е. И. Чернова В. В., Володина В. П., Колесов С. В. Биодеградация пленочных полимерных покрытий на основе хитозана //Вестн. Башкир. ун-та. 2008. Т. 13. № 1. С. 23-26. EDN: IPVEKV

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies