A new method for the synthesis of 2,3-aryl-5-arylideneimidazol-4-ones using N-trimethylsilylimidazole

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new method was developed for the synthesis of 5-arylidene-2,3-disubstituted 4 H -imidazol-4-ones by cyclization of N -substituted α,β-dehydroamino acid arylamides with N -trimethylsilylimidazole (TMSIM) in dimethylformamide. The process was carried out by both conventional and microwave heating. Target imidazol-4-one was also synthesized by a one-pot method based on the reaction of unsaturated 5(4 H )-oxazolone, arylamine, and TMSIM. The anticholinesterase and antiradical properties of synthesized both arylamides and 4-imidazolones were studied.

作者简介

V. Topuzyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

S. Tosunyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

E. Aleksanyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

E. Hakobyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

N. Hovhannisyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

A. Makichyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: ani.makichyan@rau.am

A. Shahkhatuni

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

A. Hovhannisyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

参考

  1. Sato H., Tsuda M., Watanabe K., Kobayashi J. // Tetrahedron. 1998. Vol. 54. N 30. P. 8687. doi: 10.1016/S0040-4020(98)00470-0
  2. Chan G.W., Mong S., Hemling M.E., Freyer A.J., Offen P.H., DeBrosse C.W., Sarau H.M., Westley J.W. // J. Nat. Prod. 1993. Vol. 56. N 1. P. 116. doi: 10.1021/np50091a016
  3. Edrada R.A., Stessman C.C., Crews P. // J. Nat. Prod. 2003. Vol. 66. N 7. P. 939. doi: 10.1021/np020503d
  4. Loukaci A., Guyot M., Chiaroni A., Riche C. // J. Nat. Prod. 1998. Vol. 61. N 4. P. 519. doi: 10.1021/np970019o
  5. Guyot M., Meyer M. // Tetrahedron Lett. 1986. Vol. 27. N 23. P. 2621. doi: 10.1016/S0040-4039(00)84600-6
  6. Cody C.W., Prasher D.C., Westler W.M., Prendergast F.G., Ward W.W. // Biochemistry. 1993. Vol. 32. N 5. P. 1212. doi: 10.1021/bi00056a003
  7. Kortiwala N., Patel J., Desai V.A. // J. Chem. Chem. Sci. 2016. Vol. 6. N 1. P. 25.
  8. Топузян В.О., Казоян В.М. // Докл. НАН Республики Армения. 2018. Т. 118. № 3. С. 268.
  9. Gutiérrez S., Martínez-López D., Morón M., Sucunza D., Sampedro D., Domingo A., Salgado A., Vaquero J.J. // Chem. Eur. J. 2015. Vol. 21. N 51. P. 18758. doi: 10.1002/chem.201502929
  10. Keel K.L., Tepe J.J. // Org. Chem. Front. 2020. Vol. 7. N 20. P. 3284. doi: 10.1039/D0QO00764A.
  11. Баранов М.С., Балеева Н.С. // ХГС. 2016. Т. 52. № 7. С. 444
  12. Baleeva N.S., Baranov M.S. // Chem. Heterocycl. Compd. 2016. Vol. 52. N 7. P. 444. doi: 10.1007/s10593-016-1909-4
  13. Топузян В.О., Оганесян А.А., Паносян Г.А. // ЖОрХ. 2004. Т. 40. Вып. 11, С. 1692
  14. Topuzyan V.O., Oganesyan A.A., Panosyan G.A. // Russ. J. Org. Chem. 2004. Vol. 40. N 11. P. 1644. doi: 10.1007/s11178-005-0072-7
  15. Топузян В.О., Казоян В.М., Тамазян Р.А., Айвазян А.Г., Галстян Л.Х. // ЖОрХ. 2018. Т. 54. Вып. 9. С. 1355
  16. Topuzyan V.O., Kazoyan V.M., Tamazyan R.A., Aivazyan A.G., Galstyan L.Kh. // Russ. J. Org. Chem. 2018. Vol. 54. N 9. P. 1369. doi: 10.1134/S1070428018090178
  17. Topuzyan V.O., Ghazoyan V.M., Hovhannisyan G.Sh., Hovhannisyan A.A. // Chem. J. Armenia. 2018. N 4. P. 551.
  18. Muselli M., Colombeau L., Hedouin J., Hoarau Ch., Bischoff L. // Synlett. 2016. Vol. 27. N 20. P. 2819. doi: 10.1055/s-0035-1562524
  19. Топузян В.О., Оганесян А.А., Тосунян С.Р., Тамазян Р.А., Айвазян А.Г., Макичян А.Т. // ЖОХ. 2022. Т. 92. № 9. C. 1356. doi: 10.31857/S0044460X22090049
  20. Topuzyan V.O., Hovhannisyan A.A., Tosunyan S.R., Tamazyan R.A., Ayvazyan A.G., Makichyan A.T. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 1610. doi: 10.1134/S1070363222090043
  21. Hoshina H., Tsuru H., Kubo K., Igarashi T., Sakurai T. // Heterocycles. 2000. Vol. 53. N 10. P. 2261. doi: 10.3987/COM-00-8999
  22. Tripathy P.K., Mukerjee A.K. // Synthesis. 1985. N 3. P. 285. doi: 10.1055/s-1985-31179
  23. Cativiela C., Diaz de Villegas M.D., Mayoral J.A., Melendez E. // J. Org. Chem. 1984. Vol. 49. N 8. P. 1436. doi: 10.1021/jo00182a024.
  24. Казанджян М.М. // Автореф. дис. … к.х.н. Ереван, 2009. 17 с.
  25. Kidwai M., Mohan R. // J. Chin. Chem. Soc. 2003. Vol. 50. N 5. P. 1075. doi: 10.1002/jccs.200300152
  26. Abdallah M.A., Zayed M.E., Shawali A.S. // Indian J. Chem. 2001. Vol. 40B. N 3. P.187.
  27. Petkova I., Dobrikov G., Banerji N., Duvanel G., Perez R., Dimitrov V., Nikolov P., Vauthey E. // J. Phys. Chem. (A). 2010. Vol. 114. N 1. P. 10. doi: 10.1021/jp903900b
  28. Khan K.M., Mughal U.R., Khan S., Perveen S., Choudhary M.I. // Lett. Drug Design Discov. 2009. Vol. 6. N 1. P. 69. doi: 10.2174/157018009787158553
  29. Bhattacharjya G., Savitha G., Ramanathan G. // J. Mol. Struct. 2005. Vol. 752. N 1-3. P. 98. doi: 10.1016/j.molstruc.2005.05.044
  30. Топузян В.О., Тосунян С.Р. // Хим. ж. Арм. 2012. Т. 65. № 3. С. 369.
  31. Tu S., Zhang J., Jia R., Zhang Y., Jiang B., Shi F. // Synthesis. 2007. N 4. P. 558. doi: 10.1055/s-2007-965898
  32. Bird C.W., Twibell J.D. // J Chem. Soc. 1971. P. 3155. doi: 10.1039/j39710003155

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##