Углеродные наноточки: получение, свойства, применение (обзор)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Углеродные наноточки – особый класс наночастиц размером от 1 нм, состоящих в основном из углерода и обладающих выраженными флуоресцентными свойствами. Они были открыты 20 лет назад и с тех пор нашли многочисленные применения в качестве флуоресцентных сенсоров, фотокатализаторов, флуоресцентных чернил и др., что привело к бурному развитию методов их получения и изучения. В данном обзоре рассмотрены современные представления о синтезе, выделении, оптических свойствах и применении углеродных наноточек. Сформулированы основные направления дальнейших исследований в этой области.

Полный текст

Доступ закрыт

Об авторах

Е. А. Карпушкин

Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: eukarr@gmail.com
Россия, Москва

Е. С. Харочкина

Московский государственный университет имени М. В. Ломоносова

Email: eukarr@gmail.com
Россия, Москва

Л. И. Лопатина

Московский государственный университет имени М. В. Ломоносова

Email: eukarr@gmail.com
Россия, Москва

В. Г. Сергеев

Московский государственный университет имени М. В. Ломоносова

Email: eukarr@gmail.com
Россия, Москва

Список литературы

  1. Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. // J. Am. Chem. Soc. 2004. Vol. 126. N 40. P. 12736. doi: 10.1021/ja040082h
  2. Hu J., Sun Y., Aryee A.A., Qu L., Zhang K., Li Z. // Anal. Chim. Acta. 2022. Vol. 1209. P. 338885. doi: 10.1016/j.aca.2021.338885
  3. Facure M.H.M., Schneider R., Mercante L.A., Correa D.S. // Environ. Sci.: Nano. 2020. Vol. 7. N 12. P. 3710. doi: 10.1039/d0en00787k
  4. Mansuriya B.D., Altintas Z. // Nanomaterials. 2021. Vol. 11. N 10. P. 2525. doi: 10.3390/nano11102525.
  5. Cui J., Panfil Y.E., Koley S., Shamalia D., Waiskopf N., Remennik S., Popov I., Oded M., Banin U. // Nat. Commun. 2019. Vol. 10. N 1. P. 5401. doi: 10.1038/s41467-019-13349-1
  6. Liang W., Wang P., Meziani M.J., Ge L., Yang L., Patel A.K., Morgan S.O., Sun, Y.-P. // Nanoscale Adv. 2021. Vol. 3. N 14. P. 4186–4195. doi: 10.1039/d1na00286d
  7. Liang W., Ge L., Hou X., Ren X., Yang L., Bunker C.E., Overton C.M., Wang P., Sun Y.-P. // C. 2019. Vol. 5. N 4. P. 70. doi: 10.3390/c5040070
  8. Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. // Chem. Mater. 2018. Vol. 30. N 6. P. 1878. doi: 10.1021/acs.chemmater.7b04446
  9. Sun Y.-P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., Luo P.G., Yang H., Kose M.E., Chen B., Veca L. M., Xie S.-Y. // J. Am. Chem. Soc. 2006. Vol. 128. N 24. P. 7756. doi: 10.1021/ja062677d
  10. Pan D., Zhang J., Li Z., Wu M. // Adv. Mater. 2010. Vol. 22. N 6. P. 734. doi: 10.1002/adma.200902825
  11. Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B. // Nano Res. 2015. Vol. 8. N 2. P. 355. doi: 10.1007/s12274-014-0644-3
  12. Karpushkin E.A., Bugerya A.A., Lopatina L.I., Sergeyev V.G. // Rev. Adv. Chem. 2023. Vol. 12. N 4, P. 195. doi: 10.1134/S2634827622600220
  13. Karpushkin E.A., Mesnyankina E.A., Tagirova M.R., Zaborova O.V., Sergeyev V.G. // Russ. J. Gen. Chem. 2022. Vol. 92. N 10. P. 2042. doi: 10.1134/s1070363222100188
  14. Karpushkin E., Kharochkina E., Mesnyankina E., Zaborova O., Sergeyev V. // Physchem. 2023. Vol. 3. N 1. P. 92. doi: 10.3390/physchem3010008
  15. Hu S.-L., Niu K.-Y., Sun J., Yang J., Zhao N.-Q., Du X.-W. // J. Mater. Chem. 2009. Vol. 19. P. 484. doi: 10.1039/B812943F
  16. Li X., Wang H., Shimizu Y., Pyatenko A., Kawaguchi K., Koshizaki N. // Chem. Commun. 2011. Vol. 47. N. 3. P. 932. doi: 10.1039/c0cc03552a
  17. Peng H., Travas-Sejdic J. // Chem. Mater. 2009. Vol. 21. N 23. P. 5563. doi: 10.1021/cm901593y.
  18. Zhou J., Booker C., Li R., Zhou X., Sham T.-K., Sun X., Ding, Z. // J. Am. Chem. Soc. 2007. Vol. 129. N 4. P. 744. doi: 10.1021/ja0669070
  19. Zhuo S., Shao M., Lee S.-T. // ACS Nano. 2012. Vol. 6. N 2. P. 1059. doi: 10.1021/nn2040395
  20. Chen B., Li F., Li S., Weng W., Guo H., Guo T., Zhang X., Chen Y., Huang T., Hong X., You S., Lin Y., Zeng K., Chen S. // Nanoscale. 2013. Vol. 5. N 5. P. 1967. doi: 10.1039/c2nr32675b
  21. Ma C.-B., Zhu Z.-T., Wang H.-X., Huang X., Zhang X., Qi X., Zhang H.-L., Zhu Y., Deng X., Peng Y., Han Y., Zhang H. // Nanoscale. 2015. Vol. 7. N 22. P. 10162. doi: 10.1039/c5nr01757b
  22. Strauss V., Wang H., Delacroix S., Ledendecker M., Wessig P. // Chem. Sci. 2020. Vol. 11. N 31. P. 8256. doi: 10.1039/d0sc01605e
  23. Golon A., Kuhnert N. // J. Agric. Food Chem. 2012. Vol. 60. N 12. P. 3266. doi: 10.1021/jf204807z
  24. Zhu H., Wang X., Li Y., Wang Z., Yang F., Yang X. // Chem. Commun. 2009. Vol. 34. P. 5118. doi: 10.1039/b907612c
  25. Zhai X., Zhang P., Liu C., Bai T., Li W., Dai L., Liu W. // Chem. Commun. 2012. Vol. 48. N 64. P. 7955. doi: 10.1039/c2cc33869f
  26. Yang Z.-C., Wang M., Yong A.M., Wong S.Y., Zhang X.-H., Tan H., Chang A.Y., Li X., Wang J. // Chem. Commun. 2011. Vol. 47. N 42. P. 11615. doi: 10.1039/c1cc14860e
  27. Cailotto S., Amadio E., Facchin M., Selva M., Pontoglio E., Rizzolio F., Riello P., Toffoli G., Benedetti A., Perosa A. // ACS Med. Chem. Lett. 2018. Vol. 9. N 8. P. 832. doi: 10.1021/acsmedchemlett.8b00240
  28. Deng Y., Zhou Y., Li Q., Qian J. // Anal. Methods. 2021. Vol. 13. N 33. P. 3685. doi: 10.1039/d1ay00885d
  29. Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B. // Angew. Chem. Int. Ed. 2013. Vol. 52. N 14. P. 3953. doi: 10.1002/anie.201300519
  30. Khan W.U., Wang D., Zhang W., Tang Z., Ma X., Ding X., Du S., Wang Y. // Sci. Rep. 2017. Vol. 7. N 1. P. 14866. doi: 10.1038/s41598-017-15054-9
  31. Yang Y., Cui J., Zheng M., Hu C., Tan S., Xiao Y., Yang Q., Liu Y. // Chem. Commun. 2012. Vol. 48. N 3. P. 380. doi: 10.1039/c1cc15678k
  32. Gu J., Wang W., Zhang Q., Meng Z., Jia X, Xi K. // RSC Adv. 2013. Vol. 3. P. 15589. doi: 10.1039/C3RA41654B
  33. Liang Q., Ma W., Shi Y., Li Z., Yang X. // Carbon. 2013. Vol. 60. P. 421. doi: 10.1016/j.carbon.2013.04.055
  34. De B., Karak N. // RSC Adv. 2013. Vol. 3. P. 8286. doi: 10.1039/C3RA00088E
  35. Msto R.K., Othman H.O., Al-Hashimi B.R., Salahuddin Ali D., Hassan D.H., Hassan A.Q., Smaoui S. // J. Food Qual. 2023. Vol. 2023. P. 5555608. doi: 10.1155/2023/5555608
  36. He Q., Yu Y., Wang J., Suo X., Liu Y. // Ind. Eng. Chem. Res. 2021. Vol. 60. N 12. P. 4552. doi: 10.1021/acs.iecr.0c06280
  37. Boukhvalov D.W., Osipov V.Y. // Crystals. 2023. Vol. 13. N 5. P. 716. doi: 10.3390/cryst13050716
  38. Senanayake R.D., Yao X., Froehlich C.E., Cahill M.S., Sheldon T.R., McIntire M., Haynes C.L., Hernandez R. // J. Chem. Inf. Model. 2022. Vol. 62. N 23. P. 5918. doi: 10.1021/acs.jcim.2c01007
  39. Poerschmann J., Weiner B., Koehler R., Kopinke F.-D. // ACS Sustainable Chem. Eng. 2017. Vol. 5. N 8. P. 6420. doi: 10.1021/acssuschemeng.7b00276
  40. Papaioannou N., Marinovic A., Yoshizawa N., Goode A.E., Fay M., Khlobystov A., Titirici M.-M., Sapelkin A. // Sci. Rep. 2018. Vol. 8. N 1. P. 6559. doi: 10.1038/s41598-018-25012-8
  41. Li S., Liang F., Wang J., Zhang H., Zhang S. // Adv. Powder Technol. 2017. Vol. 28. N 10. P. 2648. doi: 10.1016/j.apt.2017.07.017
  42. Chen C.-Y., Tsai Y.-H., Chang C.-W. // New J. Chem. 2019. Vol. 43. N 16. P. 6153. doi: 10.1039/c9nj00434c
  43. Kalaiyarasan G., Joseph J., Kumar P. // ACS Omega. 2020. Vol. 5. N 35. P. 22278. doi: 10.1021/acsomega.0c02627
  44. Hu Q., Gong X., Liu L., Choi M.M.F. // J. Nanomater. 2017. Vol. 2017. P. 1804178. doi: 10.1155/2017/1804178
  45. Pandey S., Mewada A., Oza G., Thakur M., Mishra N., Sharon M., Sharon M. // Nanosci. Nanotechnol. Lett. 2013. Vol. 5. N 7. P. 775. doi: 10.1166/nnl.2013.1617
  46. Liu L., Xu Z. // Anal. Methods. 2019. Vol. 11. N 6. P. 760. doi: 10.1039/c8ay02660b
  47. Kokorina A.A., Bakal A.A., Shpuntova D.V., Kostritskiy A.Y., Beloglazova N.V., De Saeger S., Sukhorukov G.B., Sapelkin A.V., Goryacheva I.Y. // Sci. Rep. 2019. Vol. 9. N 1. P. 14665. doi: 10.1038/s41598-019-50922-6
  48. Carbonaro C.M., Corpino R., Salis M., Mocci F., Thakkar S.V., Olla C., Ricci P.C. // C. 2019. Vol. 5. N 4. P. 60. doi: 10.3390/c5040060
  49. Mintz K.J., Zhou Y., Leblanc R.M. // Nanoscale. 2019. Vol. 11. N 11. P. 4634. doi: 10.1039/c8nr10059d
  50. Li L., Dong T. // J. Mater. Chem. C. 2018. Vol. 6. N 60. P. 7944. doi: 10.1039/c7tc05878k
  51. Zhi B., Yao X., Cui Y., Orr G., Haynes C.L. // Nanoscale. 2019. Vol. 11. N 43. P. 20411. doi: 10.1039/c9nr05028k
  52. Qu D., Zheng M., Zhang L., Zhao H., Xie Z., Jing X., Haddad R.E., Fan H., Sun Z. // Sci. Rep. 2014. Vol. 4. N 1. P. 5294. doi: 10.1038/srep05294
  53. Koutsogiannis P., Thomou E., Stamatis H., Gournis D., Rudolf P. // Adv. Phys.: X. 2020. Vol. 5. N 1. P. 1758592. doi: 10.1080/23746149.2020.1758592
  54. Parker C.A., Rees W.T. // Analyst. 1960. Vol. 85. N. 1013. P. 587. doi: 10.1039/an9608500587
  55. Brouwer A.M. // Pure Appl. Chem. 2011. Vol. 83. N 12. P. 2213. doi: 10.1351/pac-rep-10-09-31
  56. Rurack K. Standardization and Quality Assurance in Fluorescence Measurements I / Ed. U. Resch-Genger. Berlin; Heidelberg: Springer, 2008. P. 101. doi: 10.1007/4243_2008_019.
  57. Hallaji Z., Bagheri Z., Kalji S.-O., Ermis E., Ranjbar B. // FlatChem. 2021. Vol. 29. P. 100271. doi: 10.1016/j.flatc.2021.100271
  58. Bhunia S.K., Saha A., Maity A.R., Ray S.C., Jana N.R. // Sci. Rep. 2013. Vol. 3. N 1. P. 1473. doi: 10.1038/srep01473
  59. Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H.A., Yang X., Lee S.-T. // Angew. Chem. Int. Ed. 2010. Vol. 49. N 26. P. 4430. doi: 10.1002/anie.200906154
  60. Sharma A., Gadly T., Neogy S., Ghosh S.K., Kumbhakar M. // J. Phys. Chem. Lett. 2017. Vol. 8. N 5. P. 1044. doi: 10.1021/acs.jpclett.7b00170
  61. Zhi B., Cui Y., Wang S., Frank B.P., Williams D.N., Brown R.P., Melby E.S., Hamers R.J., Rosenzweig Z., Fairbrother D.H., Orr G., Haynes C.L. // ACS Nano. 2018. Vol. 12. N 6. P. 5741. doi: 10.1021/acsnano.8b01619
  62. Yuan F., Wang Z., Li X., Li Y., Tan Z., Fan L., Yang S. // Adv. Mater. 2017. Vol. 29. N 3. P. 1604436. doi: 10.1002/adma.201604436
  63. Ding H., Li X.-H., Chen X.-B., Wei J.-S., Li X.-B., Xiong H.-M. // J. Appl. Phys. 2020. Vol. 127. N 23. P. 231101. doi: 10.1063/1.5143819
  64. Ding H., Yu S.-B., Wei J.-S., Xiong H.-M. // ACS Nano. 2016. Vol. 10. N 1. P. 484. doi: 10.1021/acsnano.5b05406
  65. Schneider J., Reckmeier C.J., Xiong Y., von Seckendorff M., Susha A.S., Kasák P., Rogach A.L. // J. Phys. Chem. C. 2017. Vol. 121. N 3. P. 2014. doi: 10.1021/acs.jpcc.6b12519
  66. Pontes S.M.A., Rodrigues V.S.F., Carneiro S.V., Oliveira J.J.P., Moura T.A., Paschoal A.R., Antunes R.A., Oliveira D.R., de Oliveira J.R., Fechine L.M.U.D., Mazzetto S.E., Fechine P.B.A., Clemente C. da S. // Nano-Struct. Nano-Objects. 2022. Vol. 32. P. 100917. doi: 10.1016/j.nanoso.2022.100917
  67. Kandasamy G. // C. 2019. Vol. 5. N 2. P. 24. doi: 10.3390/c5020024
  68. Shan X., Chai L., Ma J., Qian Z., Chen J., Feng H. // Analyst. 2014. Vol. 139. N 10. P. 2322. doi: 10.1039/c3an02222f
  69. Bourlinos A.B., Trivizas G., Karakassides M.A., Baikousi M., Kouloumpis A., Gournis D., Bakandritsos A., Hola K., Kozak O., Zboril R., Papagiannouli I., Aloukos P., Couris S. // Carbon. 2015. Vol. 83. P. 173. doi: 10.1016/j.carbon.2014.11.032
  70. Jana J., Ganguly M., Chandrakumar Kuttay R.S., Rao G.M., Pal T. // Langmuir. 2017. Vol. 33. N 2. P. 573. doi: 10.1021/acs.langmuir.6b04100
  71. Jia Y., Hu Y., Li Y., Zeng Q., Jiang X., Cheng Z. // Mikrochim. Acta. 2019. Vol. 186. N 2. P. 84. doi: 10.1007/s00604-018-3196-5
  72. Zuo G., Xie A., Li J., Su T., Pan X., Dong W. // J. Phys. Chem. C. 2017. Vol. 121. N 47. P. 26558. doi: 10.1021/acs.jpcc.7b10179
  73. Zhou J., Shan X., Ma J., Gu Y., Qian Z., Chen J., Feng H. // RSC Adv. 2014. Vol. 4. P. 5465. doi: 10.1039/C3RA45294H
  74. Sarkar S., Das K., Ghosh M., Das P.K. // RSC Adv. 2015. Vol. 5. N 81. P. 65913. doi: 10.1039/c5ra09905f
  75. Shi D., Yan F., Zheng T., Wang Y., Zhou X., Chen L. // RSC Adv. 2015. Vol. 5. N 119. P. 98492. doi: 10.1039/c5ra18800h
  76. Wang W., Li Y., Cheng L., Cao Z., Liu W. // J. Mater. Chem. B. 2014. Vol. 2. N 1. P. 46. doi: 10.1039/c3tb21370f
  77. Chandra S., Patra P., Pathan S.H., Roy S., Mitra S., Layek A., Bhar R., Pramanik P., Goswami A. // J. Mater. Chem. B. 2013. Vol. 1. N 18. P. 2375. doi: 10.1039/c3tb00583f
  78. Xu Q., Pu P., Zhao J., Dong C., Gao C., Chen Y., Chen J., Liu Y., Zhou H. // J. Mater. Chem. A. 2015. Vol. 3. N 2. P. 542. doi: 10.1039/c4ta05483k
  79. Travlou N.A., Secor J., Bandosz T.J. // Carbon. 2017. Vol. 114. P. 544. doi: 10.1016/j.carbon.2016.12.035
  80. Naik V.M., Gunjal D.B., Gore A.H., Pawar S.P., Mahanwar S.T., Anbhule P.V., Kolekar G.B. // Diamond Relat. Mater. 2018. Vol. 88. P. 262. doi: 10.1016/j.diamond.2018.07.018
  81. Wu F., Yang M., Zhang H., Zhu S., Zhu X., Wang K. // Opt. Mater. 2018. Vol. 77. P. 258. doi: 10.1016/j.optmat.2018.01.048
  82. Liu S., Tian J., Wang L., Zhang Y., Qin X., Luo Y., Asiri A.M., Al-Youbi A.O., Sun X. // Adv. Mater. 2012. Vol. 24. N 15. P. 2037. doi: 10.1002/adma.201200164
  83. Dey S., Chithaiah P., Belawadi S., Biswas K., Rao C.N.R. // J. Mater. Res. 2014. Vol. 29. N 3. P. 383. doi: 10.1557/jmr.2013.295
  84. Wang L., Yin Y., Jain A., Zhou H.S. // Langmuir. 2014. Vol. 30. N 47. P. 14270. doi: 10.1021/la5031813
  85. Niu J., Gao H. // J. Lumin. 2014. Vol. 149. P. 159. doi: 10.1016/j.jlumin.2014.01.026
  86. Hu R., Li L., Jin W.J. // Carbon. 2017. Vol. 111. P. 133. doi: 10.1016/j.carbon.2016.09.038
  87. Wang H., Gao P., Wang Y., Guo J., Zhang K.-Q., Du D., Dai X., Zou G. // APL Mater. 2015. Vol. 3. N 8. P. 086102. doi: 10.1063/1.4928028
  88. Simões E.F.C., Leitão J.M.M., Esteves da Silva J.C.G. // Anal. Chim. Acta. 2017. Vol. 960. P. 117. doi: 10.1016/j.aca.2017.01.007
  89. Wang J., Xiang X., Milcovich G., Chen J., Chen C., Feng J., Hudson S.P., Weng X., Ruan Y. // J. Mol. Recognit. 2019. Vol. 32. N. 2. P. e2761. doi: 10.1002/jmr.2761
  90. Ding H., Wei J.-S., Xiong H.-M. // Nanoscale. 2014. Vol. 6. N 22. P. 13817. doi: 10.1039/c4nr04267k
  91. Anjana R.R., Anjali Devi J.S., Jayasree M., Aparna R.S., Aswathy B., Praveen G.L., Lekha G.M., Sony G. // Mikrochim. Acta. 2017. Vol. 185. N 1. P. 11. doi: 10.1007/s00604-017-2574-8
  92. Zhou W., Zhuang J., Li W., Hu C., Lei B., Liu Y. // J. Mater. Chem. C. 2017. Vol. 5. N 32. P. 8014. doi: 10.1039/c7tc01819c
  93. Qu D., Zheng M., Du P., Zhou Y., Zhang L., Li D., Tan H., Zhao Z., Xie Z., Sun Z. // Nanoscale. 2013. Vol. 5. N 24. P. 12272. doi: 10.1039/c3nr04402e
  94. Xing X., Huang L., Zhao S., Xiao J., Lan M. // Microchem. J. 2020. Vol. 157. P. 105065. doi: 10.1016/j.microc.2020.105065
  95. Liu J., Li R., Yang B. // ACS Cent. Sci. 2020. Vol. 6. N 12. P. 2179. doi: 10.1021/acscentsci.0c01306
  96. Qu S., Wang X., Lu Q., Liu X., Wang L. // Angew. Chem. Int. Ed. 2012. Vol. 51. N 49. P. 12215. doi: 10.1002/anie.201206791.
  97. Song X., Guo Q., Cai Z., Qiu J., Dong G. // Ceram. Int. 2019. Vol. 45. N. 14. P. 17387. doi: 10.1016/j.ceramint.2019.05.299
  98. Wyrzykowski D., Hebanowska E., Nowak-Wiczk G., Makowski M., Chmurzyński L. // J. Therm. Anal. Calorim. 2011. Vol. 104. N 2. P. 731. doi: 10.1007/s10973-010-1015-2
  99. Wang D., Dong N., Niu Y. Hui S. // J. Chem. 2019. Vol. 2019. P. 6853638. doi: 10.1155/2019/6853638
  100. Kasprzyk W., Świergosz T., Romańczyk P.P., Feldmann J., Stolarczyk J.K. // Nanoscale. 2022. Vol. 14. N 39. P. 14368. doi: 10.1039/d2nr03176k
  101. Sell W.J., Easterfield T.H. // J. Chem. Soc. 1893. Vol. 63. P. 1035. doi: 10.1039/ct8936301035.
  102. Kasprzyk W., Świergosz T., Bednarz S., Walas K., Bashmakova N.V., Bogdał D. // Nanoscale. 2018. Vol. 10. N 29. P. 13889. doi: 10.1039/c8nr03602k
  103. La Ferla B., Vercelli B. // Nanomaterials. 2023. Vol. 13. N 10. P. 1635. doi: 10.3390/nano13101635
  104. Stepanidenko E.A., Vedernikova A.A., Miruschenko M.D., Dadadzhanov D.R., Feferman D., Zhang B., Qu S., Ushakova E.V. // J. Phys. Chem. Lett. 2023. Vol. 14. P. 11522. doi: 10.1021/acs.jpclett.3c02837
  105. Demchenko A. // C. 2019. Vol. 5. N 4. P. 71. doi: 10.3390/c5040071
  106. Bhuyan R., Bramhaiah K., Bhattacharyya S. // J. Colloid Interface Sci. 2022. Vol. 605. P. 364. doi: 10.1016/j.jcis.2021.07.119
  107. Gao X., Du C., Zhuang Z., Chen W. // J. Mater. Chem. (C). 2016. Vol. 4. N 29. P. 6927. doi: 10.1039/c6tc02055k
  108. Batool M., Junaid H.M., Tabassum S., Kanwal F., Abid K., Fatima Z., Shah A. T. // Crit. Rev. Anal. Chem. 2022. Vol. 52. N 4. P. 756. doi: 10.1080/10408347.2020.1824117
  109. Chu H.-W., Unnikrishnan B., Anand A., Lin Y.-W., Huang C.-C. // J. Food Drug Anal. 2020. Vol. 28. N. 4. P. 539. doi: 10.38212/2224-6614.1269
  110. Kaur I., Batra V., Kumar Reddy Bogireddy N., Torres Landa S.D., Agarwal V. // Food Chem. 2023. Vol. 406. P. 135029. doi: 10.1016/j.foodchem.2022.135029
  111. Vallan L., Imahori H. // ACS Appl. Electron. Mater. 2022. Vol. 4. N 9. P. 4231. doi: 10.1021/acsaelm.2c01021
  112. Tajik S., Dourandish Z., Zhang K., Beitollahi H., Van Le Q., Jang H.W., Shokouhimehr M. // RSC Adv. 2020. Vol. 10. N 26. P. 15406. doi: 10.1039/d0ra00799d
  113. Jung H., Sapner V.S., Adhikari A., Sathe B.R., Patel R. // Front. Chem. 2022. Vol. 10. P. 881495. doi: 10.3389/fchem.2022.881495
  114. Akbar K., Moretti E., Vomiero A. // Adv. Opt. Mater. 2021. Vol. 9. N 17. P. 2100532. doi: 10.1002/adom.202100532
  115. Shen L., Zhang L., Chen M., Chen X., Wang J. // Carbon. 2013. Vol. 55. P. 343. doi: 10.1016/j.carbon.2012.12.074
  116. Lai C.-W., Hsia Y.-H., Peng Y.-K., Chou P.-T. // J. Mater. Chem. 2012. Vol. 22. P. 14403. doi: 10.1039/C2JM32206D
  117. Guo X., Wang C.-F., Yu Z.-Y., Chen L., Chen S. // Chem. Commun. 2012. Vol. 48. N 21. P. 2692. doi: 10.1039/c2cc17769b
  118. Zhang X., Ming H., Liu R., Han X., Kang Z., Liu Y., Zhang Y. // Mater. Res. Bull. 2013. Vol. 48. N 2. P. 790. doi: 10.1016/j.materresbull.2012.11.056
  119. Mohammed L.J., Omer K.M. // Sci. Rep. 2020. Vol. 10. N 1. P. 3028. doi: 10.1038/s41598-020-59958-5
  120. Kalytchuk S., Wang Yu, Poláková K., Zbořil R. // ACS Appl. Mater. Interfaces. 2018. Vol. 10. P. 29902. doi: 10.1021/acsami.8b11663
  121. Zheng C., An X., Gong J. // RSC Adv. 2015. Vol. 5. N 41. P. 32319. doi: 10.1039/c5ra01986a

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Двумерные диаграммы ван Кревелена (зависимость мольного отношения H/C от мольного отношения O/C) для (a) 284 сигналов продуктов пиролиза глюкозы, (б) 113 сигналов продукта пиролиза фруктозы и (в) 158 сигналов продуктов пиролиза сахарозы. Воспроизведено из [23]

Скачать (265KB)
3. Рис. 2. Спектры испускания (a), квантовый выход флуоресценции (б) и концентрация (в) продукта микроволновой обработки лимонной кислоты в зависимости от продолжительности диализа, а также хроматограммы соответствующих продуктов (г), зарегистрированные по ультрафиолетовому поглощению (UV-HPLC) и флуоресценции (FL-HPLC). Воспроизведено из [42]

Скачать (484KB)
4. Рис. 3. Электрофоретическое разделение продукта гидротермальной обработки смеси лимонной кислоты с этилендиамином, визуализация в естественном свете (а) и при освещении ультрафиолетовой лампой (б, в): хроматограммы исходной смеси с обозначенными полосами, содержащими различные продукты (а, б) и исходной смеси и выделенных фракций (в). Воспроизведено из [47]

Скачать (324KB)
5. Рис. 4. Схема возможных механизмов флуоресценции УТ, соответствующие структурные фрагменты и спектры поглощения (1) и возбуждения флуоресценции (2). Воспроизведено из [60]

Скачать (373KB)
6. Рис. 5. Фотографии образцов A–D (УКТ на основе лимонной кислоты и фенилендиамина) в естественном (а) и УФ (б) освещении, спектры поглощения (Abs) и испускания (Em) при различных значениях λex (нм) соответствующих образцов (в). Воспроизведено из [64]

Скачать (419KB)
7. Рис. 6. Условия синтеза УТ на основе лимонной кислоты и различных аминов; предполагаемая структура молекулярного флуорофора, ответственного за флуоресценцию УТ; внешний вид образцов в естественном и УФ освещении. Воспроизведено из [65]

Скачать (379KB)
8. Рис. 7. Спектры поглощения (точки), возбуждения (пунктирные линии) и испускания (сплошные линии) суспензии образца УКТ (0.01 мг/мл); врезка: (слева направо) вид образца в естественном освещении и при облучении светом с длиной волны 340, 450 и 550 нм. Воспроизведено из [66]

Скачать (197KB)
9. Рис. 8. Схема строения N-допированных УКТ, иллюстрирующая структурные типы атомов азота и их относительное содержание в зависимости от количества перхлората железа (III) при синтезе. Воспроизведено из [86]

Скачать (609KB)
10. Рис. 9. Оптические свойства УКТ на основе гликолевой (G-NCDs), яблочной (M-NCDs) и лимонной (C-NCDs) кислот (а) и схема строения молекулярных орбиталей этих УКТ (б). Воспроизведено из [87]

Скачать (510KB)
11. Рис. 10. Схема взаимодействия лимонной кислоты с амином с образованием ПТ и УКТ. Воспроизведено из [29]

Скачать (173KB)
12. Рис. 11. Основные реакции, протекающие при термолизе лимонной кислоты и ее смесей с различными азотсодержащими веществами. Воспроизведено из [100]

Скачать (412KB)
13. Рис. 12. Разделение продуктов взаимодействия лимонной кислоты и мочевины в массе при 230°C и внешний вид выделенных фракций. Воспроизведено из [22]

Скачать (548KB)
14. Рис. 13. Схема взаимодействия лимонной кислоты и мочевины в отсутствие растворителя при нагревании. Воспроизведено из [22]

Скачать (214KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах