Влияние атома кремния на распределение электронной плотности в молекулах кремнийорганических 1,2-гидроксиаминов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В рамках теории МО ЛКАО методами AIM, TPSS/cc-pVTZ, Хиршфилда и NBO-анализа изучен характер влияния атома кремния на отдаленно расположенные атомы азота и кислорода в молекулах 4-(диметиламино)-1,1-диэтилсилациклопентан-3-ола и 2-(диметиламино)-5-триметилсилилциклогексан-1-ола. Более выраженное в молекуле 4-(диметиламино)-1,1-диэтилсилациклопентан-3-ола, это влияние определяется геометрическими параметрами (эндоциклическое расположение атома кремния), способствующими формированию МО с большим вкладом Si. По данным NBO-анализа, взаимодействие между орбиталями связей Si-C5 и орбиталями C3-N и С1-O в силациклопентановом фрагменте молекулы 4-(диметиламино)-1,1-диэтилсилациклопентан-3-ола имеет донорно-акцепторный характер. Расчетные данные находятся в качественном согласии с результатами спектроскопии ЯМР 1H и Si29.

Об авторах

Э. М. Хамитов

Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук

И. Г. Конкина

Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук

Email: irkonk@anrb.ru

Е. М. Цырлина

Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук

А. Н. Лобов

Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук

С. П. Иванов

Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук

Список литературы

  1. Rendler S., Oestreich M. // Synthesis. 2005. Vol. 2005. P. 1727. doi: 10.1055/s-2005-869949
  2. Hwang S.-W., Tao H., Kim D.-H., Cheng H., Song J.-K., Rill E., Brenckle M.A., Panilaitis B., Won S.M., Kim Y.-S., Song Y.S., Yu K.J., Ameen A., Li R., Su Y., Yang M., Kaplan D.L., Zakin M.R., Slepian M.J., Huang Y., Omenetto F.G., Rogers J.A. // Science. 2012. Vol. 337. N 6102. P. 1640. doi: 10.1126/science.1226325
  3. Vale J.R., Valkonen A., Afonsom C.A.M., Candeias N.R. // Org. Chem. Front. 2019. Vol. 6. P. 3793. doi: 10.1039/c9qo01028a
  4. Barraza S. J., Denmark S. E. // J. Am. Chem. Soc. 2018. Vol. 140. P. 6668. doi: 10.1021/jacs.8b03187
  5. Pan T.-T., Guo M., Lu P., Hu D. // J. Sci. Food Agric. 2022. Vol. 102. P. 7405. doi: 10.1002/jsfa.12109
  6. Безручко Е.С., Федотова Л.С. // Агрохимия. 2021. № 8. С. 70. doi: 10.31857/S0002188121080032
  7. Даин И.А., Логинов С.В., Рыбаков В.Г., Чернышев В.В., Лебедев А.В., Офицеров Е.Н., Стороженко П.А. // Бутлеровск. сообщ. 2019. Т. 53. № 1. С. 107.
  8. Picard J.-P. // Adv. Organomet. Chem. 2004. Vol. 52. P. 175. doi: 10.1016/S0065-3055(04)52004-X
  9. Tandura S.N., Voronkov M.G., Alekseev N.V. // Top. Curr. Chem. Vol. 131. P. 99. Heidelberg
  10. Berlin: Springer, 1986. doi: 10.1007/3-540-15811-1_3
  11. Singh G., Kaur G., Singh J. // Inorg. Chem. Commun. 2018. Vol. 88. P. 11. doi: 10.1016/j.inoche.2017.12.002
  12. Воронков М. Г., Пестунович В.А., Чернов Н.Ф., Албанов А.И., Белоголова Е.Ф., Клюба Л.В., Пестунович А.Е. // ЖОХ. 2006. Т. 76. № 10. С. 1621
  13. Voronkov M.G., Pestunovich V.A., Chernov N.F., Albanov A.I., Belogolova E.F., Klyba L.V., Pestunovich A.E. // Russ. J. Gen. Chem. 2006. Vol. 76. P. 1554. doi: 10.1134/S1070363206100082
  14. Воронков М.Г., Трофимова О.М., Болгова Ю.И., Чернов Н.Ф. // Усп. хим. 2007. Т. 76. № 9. С. 885
  15. Voronkov M.G., Trofimova O.M., Bolgova Yu.I., Chernov N.F. // Russ. Chem. Rev. 2007. Vol. 76. N 9. P. 825. doi: 10.1070/RC2007v076n09ABEH003706
  16. Шелудяков В.Д., Кузьмина Н.Е., Абрамкин А.Н., Корлюков А.А., Архипов Д.Е., Логинов С.В., Чешков Д.А., Стороженко П.А. // ЖОХ. 2011. Т. 81. № 12. С. 2010
  17. Sheludyakov V.D., Kuz'mina N.E., Abramkin A.M., Korlyukov A.A., Arkhipov D.E., Loginov S.V., Cheshkov D.A., Storozhenko P.A. // Russ. J. Gen. Chem. 2011. Vol. 81. N 12. P. 2468. doi: 10.1134/S1070363211120085
  18. Lyssenko K.A., Korlyukov A.A., Antipin M.Y., Knyazev S.P., Kirin V N., Alexeev N.V., Chernyshev E.A. // Mendeleev Commun. 2000. Vol. 10. N 3. P. 88. doi: 10.1070/MC2000v010n03ABEH001270
  19. Belogolova E.F., SidorkinV.F. // Mol. Struct. Theochem. 2004. Vol. 668. N 2-3. P. 139. doi: 10.1016/j.theochem.2003.10.020
  20. Trofimov A.B., Zakrzewski V.G., Dolgounitcheva O., Ortiz J.V., Sidorkin V.F., Belogolova E.F., Belogolov M., Pestunovich V.A. // J. Am. Chem. Soc. 2005. Vol. 127. N 3. P. 986. doi 1021/ja045667q
  21. Sidorkin V.F., Belogolova E.F., Doronina E.P. // Phys. Chem. Chem. Phys. 2015. Vol. 17. N 39. P. 26225. doi: 10.1039/c5cp04341g PMID: 26381586.
  22. Корлюков А.А. // Усп. хим. 2015. Т. 84. № 4. С. 422
  23. Korlyukov A. A. // Russ. Chem. Rev. 2015. Vol. 84. N 4. P. 422. doi: 10.1070/RCR4466
  24. Sterkhova I.V., Lazareva N.F. // SSRN. Abstract 4368146. doi: 10.2139/ssrn.4368146
  25. Lazareva N.F., Alekseev M.A., Sterkhova I.V. // Mendeleev Commun. 2022. Vol. 32. N 5. P. 686. doi: 10.1016/j.mencom.2022.09.040
  26. Цырлина Е.М. Дис. канд. хим. наук. Уфа, 1985. 187 с.
  27. Конкина И.Г., Муринов Ю.И. // Вестн. БашГУ. 2021. Т. 26. № 1. С. 47. doi: 10.33184/bulletin-bsu-2021.1.8
  28. Krapivin A.M., Magi M., Svergun V.I., Zaharjan R.Z., Babich E.D., Ushakov N.V. // J. Organomet. Chem.1980. Vol. 190. N 1. P. 9. doi: 10.1016/S0022-328X(00)82875-2
  29. Frieman F., Fang C., Shainyan B.A. // Int. J. Quant. Chem. 2004. Vol. 100. P. 720. doi: 10.1002/qua.20236
  30. Гайлюнас И.А., Цырлина Е.М., Соловьева Н.И., Комаленкова Н.Г., Юрьев Е.П. // ЖОХ. 1977. Т. 47. № 10. С. 2394.
  31. Тюрина Л.А., Гайлюнас И.А., Семенов В.А., Цырлина Е.М., Сингизова В.Х., Соловьева В.И. // ЖОХ. 1981. Т. 51. № 12. С. 2691.
  32. Kiss-Eröss K., Svehla G. Analytical Infrared Spectroscopy. Amsterdam; Oxford; New York: Elsevier Scientific Publishing Company, 1976.
  33. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., ScalmaniG., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakke V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E. Yazyev O., Austin A.J., Cammi R., Pomell C., Ochterski J.W., Martin R.L., Morokum K., Zakrzewski V.G., Vot G.A., Salvado P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.
  34. Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. Vol. 91. N 14. Article 146401. doi: 10.1103/PhysRevLett.91.146401
  35. Woon D. E., Dunning T. H. // J. Chem. Phys. 1993. Vol. 98. P. 1358. doi: 10.1063/1.464303
  36. Lu T., Manzetti S. // Struct. Chem. 2014. Vol. 25. P. 1521. doi: 10.1007/s11224-014-0430-6
  37. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. P. 580. doi: 10.1002/jcc.22885
  38. Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. Vol. 14. P. 33. doi: 10.1016/0263-7855(96)00018-5
  39. Chemcraft. https://www.chemcraftprog.com
  40. Emamian S., Lu T., Kruse H., Emamian H. // J. Comput. Chem. 2019. Vol. 40. P. 2868. doi: 10.1002/jcc.26068
  41. Reed A.E., Weinhold F. // J. Chem. Phys. 1985. Vol. 83. P. 1736. doi.org/10.1063/1.449360

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах