Молекулярные ион-активные переключатели оптических и флуоресцентных свойств на основе родамина 6G

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Cинтезирована серия производных родамина 6G с о -гидроксиарилиминными заместителями. Полученные соединения в ацетонитриле способны к индуцированной катионом H+ трансформации спиролактамной формы в открытую форму. Процесс сопровождается образованием новых длинноволновых максимумов поглощения при 527-529 нм и полос флуоресценции в области 557-560 нм. При взаимодействии катионов Zn2+ с соединением, содержащим 2-гидрокси-4-диметиламинофенильный заместитель, наблюдается возникновение эмиссии при 429 нм. Тушение этой флуоресценции осуществляется селективно анионами CN-. Катионы меди(II) вызывают трансформацию спироструктуры родамина с 2-гидрокси-3- трет -бутилбензофурановой группой в открытую форму. Изомеризация сопровождается хромогенным naked-eye эффектом - изменением окраски раствора с бледно-желтой на розовую и появлением флуоресценции при 556 нм. Наблюдаемые ион-индуцированные спектральные трансформации могут быть использованы при создании оптических и флуоресцентных хемосенсоров.

Об авторах

Е. Н Шепеленко

Федеральный исследовательский центр Южный научный центр Российской академии наук

В. А Подшибякин

Научно-исследовательский институт физической и органической химии Южного федерального университета

И. В Дубоносова

Научно-исследовательский институт физической и органической химии Южного федерального университета

О. Ю Карлутова

Научно-исследовательский институт физической и органической химии Южного федерального университета

А. Д Дубоносов

Федеральный исследовательский центр Южный научный центр Российской академии наук

Email: aled@ipoc.sfedu.ru

В. А Брень

Научно-исследовательский институт физической и органической химии Южного федерального университета

Список литературы

  1. Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Z.L. Pianowski. Weinheim: Wiley-VCH, 2022.
  2. Molecular Switches / Eds B.L. Feringa, W.R. Browne. Weinheim: Wiley, 2011.
  3. Magri D.C. // Coord. Chem. Rev. 2021. Vol. 426. Article 213598. doi: 10.1016/j.ccr.2020.213598
  4. Pianowski Z.L. // Chem. Eur. J. 2019. Vol. 25. P. 25128. doi: 10.1002/chem.201805814
  5. Knipe P.C., Thompson S., Hamilton A.D. // Chem. Sci. 2015. Vol. 6. P. 1630. doi: 10.1039/c4sc03525a
  6. Qu D., Wang Q., Zhang Q., Ma X., Tian H. // Chem. Rev. 2015. Vol. 115. P. 7543. doi: 10.1021/cr5006342
  7. Bianchi A., Delgado-Pinar E., García-Espana E., Giorgi C., Pina F. // Coord. Chem. Rev. 2014. Vol. 260. P. 156. doi: 10.1016/j.ccr.2013.09.023
  8. Fitzmaurice O., Bartkowski M., Giordani S. // Front. Chem. 2022. Vol. 10. Article 859450. doi: 10.3389/fchem.2022.859450
  9. Volaric J., Szymanski W., Simeth N.A., Feringa B.L. // Chem. Soc. Rev. 2021. Vol. 50. P. 12377. doi: 10.1039/d0cs00547a
  10. Li M., Zhao J., Chu H., Mi Y., Zhou Z., Di Z., Zhao M., Li L. // Adv. Mater. 2019. Vol. 31. Article 1804745. doi: 10.1002/adma.201804745
  11. Andréasson J., Pischel U. // Coord. Chem. Rev. 2021. Vol. 429. Article 213695. doi: 10.1016/j.ccr.2020.213695
  12. Welleman I.M., Hoorens M.W.H., Feringa B.L., Hendrikus H. Boersma H.H., Szymański W. // Chem. Sci. 2020. Vol. 11. P. 11672. doi: 10.1039/D0SC04187D
  13. Wang G., Zhang J. // J. Photochem. Photobiol. (C). 2012. Vol. 13. P. 299. doi: 10.1016/j.jphotochemrev.2012.06.002
  14. Krämer J., Kang R., Grimm L.M., De Cola L., Picchetti P., Biedermann F. // Chem. Rev. 2022. Vol. 122. P. 3459. doi: 10.1021/acs.chemrev.1c00746
  15. Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
  16. Patil N.S., Dhake R.B., Ahamed M.I., Fegade U. // J. Fluoresc. 2020. Vol. 30. P. 1295. doi: 10.1007/s10895-020-02554-7
  17. Upadhyay S., Singh A., Sinha R., Omer S., Negi K. // J. Mol. Struct. 2019. Vol. 1193. P. 89. doi: 10.1016/j.molstruc.2019.05.007
  18. Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
  19. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
  20. Lee M.H., Kim J.S., Sessler J.L. // Chem. Soc. Rev. 2015. Vol. 44. P. 4185. doi: 10.1039/C4CS00280F
  21. Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
  22. Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
  23. Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S. // Chem. Rev. 2015. Vol. 115. P. 7893. doi: 10.1021/cr500553d
  24. Nikolaeva O.G., Shepelenko E.N., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 402. doi: 10.1016/j.mencom.2016.09.012
  25. Wang Y., Wang X., Ma W., Lu R., Zhou W., Gao H. // Chemosensors. 2022. Vol. 10. Article 399. doi: 10.3390/chemosensors10100399
  26. Chi W., Qi Q., Lee R., Xu Z., Liu X. // J. Phys. Chem. (C). 2020. Vol. 124. P. 3793. doi: 10.1021/acs.jpcc.9b11673
  27. Chen X., Pradhan T., Wang F., Kim J.S., Yoon J. // Chem. Rev. 2012. Vol. 112. P. 1910. doi: 10.1021/cr200201z
  28. Kaur R., Saini S., Kaur N., Singh N., Jang D.O. // Spectrochim. Acta (A). 2020. Vol. 225. Article 117523. doi: 10.1016/j.saa.2019.117523
  29. Oliveira E., Bertolo E., Nunez C., Pilla V., Santos H.M., Fernandez-Lodeiro J., Fernandez-Lodeiro A., Djafari J., Capelo J.L., Lodeiro C. // ChemistryOpen. 2018. Vol. 7. P. 9. doi: 10.1002/open.201700135
  30. Mondal S., Bandyopadhyay C., Ghosh K. // Supramol. Chem. 2019. Vol. 31. P. 1. doi: 10.1080/10610278.2018.1522444
  31. Hu J., Long C., Fu Q., Ni P., Yin Z. // J. Photochem. Photobiol. (A). 2019. Vol. 379. P. 105. doi: 10.1016/j.jphotochem.2019.04.031
  32. Dong M., Ma T.H., Zhang A.J., Dong Y.M., Wang Y.W., Peng Y. // Dyes Pigm. 2010. Vol. 87 P. 164. doi: 10.1016/j.dyepig.2010.03.015
  33. Khan S., Chen X., Almahri A., Allehyani E.S., Alhumaydhi F.A., Ibrahim M.M., Ali S. // J. Environ. Chem. Eng. 2021. Vol. 9. Article 106381. doi: 10.1016/j.jece.2021.106381
  34. Gopalakrishnan K., Angamaly S.A., Pradeep S.D., Madhusoodhanan D.T., Manoharan D.K., Mohanan P.V. // J. Fluoresc. 2022. Vol. 32. P. 189. doi: 10.1007/s10895-021-02839-5
  35. Podshibyakin V.A., Shepelenko E.N., Karlutova O.Y., Dubonosova I.V., Borodkin G.S., Popova O.S., Zaichenko S.B., Dubonosov A.D., Bren V.A., Minkin V.I. // Tetrahedron. 2022. Vol. 110. Article 132710. doi: 10.1016/j.tet.2022.132710
  36. Shepelenko E.N., Podshibyakin V.А., Dubonosova I.V., Karlutova O.Yu., Dubonosov A.D., Bren V.A., Minkin V.I. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 2436. doi: 10.1134/S10703632221100349
  37. Попов Л.Д., Шепеленко Е.Н., Подшибякин В.А., Валова Т.М., Венидиктова О.В., Айт А.О., Дубоносов А.Д. // ЖОХ. 2023. Т. 93. С. 417
  38. Popov L.D., Shepelenko E.N., Podshibyakin V.A., Valova T.M., Venidiktova O.V., Ayt A.O., Dubonosov A.D. // Russ. J. Gen. Chem. 2023. Vol. 93. P. 535. doi: 10.1134/S107036322303009X
  39. Roy A., Shee U., Mukherjee A., Mandal S.K., Roy P. // ACS Omega. 2019. Vol. 4. P. 6864. doi: 10.1021/acsomega.9b00475
  40. Wu J., Hwang I., Kim K.S., Kim J.S. // Org. Lett. 2007. Vol. 9. P. 907. doi: 10.1021/ol070109c
  41. Ершов В.В., Никифоров Г.А., Володькин А.А. Пространственно-затрудненные фенолы. М.: Химия, 1972.
  42. Xu Z., Mao X., Wang Y., Wu W., Mao P., Zhao X., Fan Y., Li H. // RSC Adv. 2017. Vol. 7. P. 42312. doi: 10.1039/c7ra05424f
  43. Wang Y., Chang H., Wu W., Peng W., Yan Y., He C., Chen T., Zhao X., Xu Z. // Sensors and Actuators (B). 2016. Vol. 228. P. 395. doi: 10.1016/j.snb.2016.01.052
  44. Said A.I., Staneva D., Angelova S., Grabchev I. // J. Photochem. Photobiol. (A). 2022. Vol. 433. Article 114218. doi: 10.1016/j.jphotochem.2022.114218
  45. Suganya S., Naha S., Velmathi S. // ChemistrySelect. 2018. Vol. 3. P. 723. doi: 10.1002/slct.201801222
  46. Mukherjee S., Talukder S. // J. Fluoresc. 2017. Vol. 27. P. 1567. doi: 10.1007/s10895-016-1974-1
  47. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах