Synthesis, structure and non-covalent interactions of 5-methyl-2,3-dihydrothiazolo[2,3-b]thiazolium halides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

2,3-Dihydrothiazolo[2,3- b ]thiazolium iodides and bromide were obtained for the first time by the cyclization of corresponding metallyl- and propinylsulfanyl derivatives of 1,3-thiazole with iodine and bromine in dichloromethane without heating and the use of strong acids. The structure of the obtained compounds was studied by 1H, 13C{1H} NMR spectroscopy. Structure of the 3-iodomethyl-3,5-dimethyl-2,3-dihydrothiazolo[2,3- b ][1,3]thiazolium heterocyclic system is characterized by the X-ray analysis. The bonding in the heterocyclic system and non-covalent cation-anion interactions are analyzed on the basis of quantum chemical calculations with periodic boundary conditions; I···S chalcogen bond is discussed.

Sobre autores

N. Tarasova

South Ural State University (National Research University)

Email: tarasovanm@susu.ru

I. Yushina

South Ural State University (National Research University)

D. Kim

South Ural State University (National Research University)

V. Sharutin

South Ural State University (National Research University)

Bibliografia

  1. Kurhe Y., Mahesh R., Devadoss T., Gupta D. // J. Pharmacol. Pharmacother. 2014. N 5.P. 197. doi: 10.4103/0976-500X.136104
  2. Cascioferro S., Parrino B., Carbone D., Schillaci D., Giovannetti E., Cirrincione G., Diana P. // J. Med. Chem. 2020. Vol. 63. P. 7923. doi: 10.1021/acs.jmedchem.9b01245
  3. Ivanenkov Y.A., Yamidanov R.S., Osterman I.A., Sergiev P.V., Aladinskiy V.A., Aladinskaya A.V., Terentiev V.A., Veselov M.S., Ayginin A.A., Skvortsov D.A., Komarova K.S., Sadovnikov S.V., Matniyazov R., Sofronova A.A., Malyshev A.S., Machulkin A.E., Petrov R.A., Lukianov D., Iarovenko S., Bezrukov D.S., Baymiev A.Kh., Dontsova O.A. // J. Antibiotics. 2019. Vol. 72. P. 827. doi: 10.1038/s41429-019-0211-y
  4. Dahal S., Cheng R., Cheung P.K., Been T., Malty R., Geng M., Manianis S., Shkreta L., Jahanshahi S., Toutant J., Chan R., Park S., Brockman M.A., Babu M., Mubareka S., Mossman K., Banerjee A., GrayOwen S., Brown M., Houry W.A., Chabot B., Grierson D., Cochrane A. // Viruses. 2022. Vol 14. doi: 10.3390/v14010060
  5. Xu Z., Guo J., Yang Y., Zhang M., Ba M., Li Z., Cao Y., He R., Yu M., Zhou H., Li X., Huang X., Guo Y., Guo C. // Eur. J. Med. Chem. 2016. Vol. 123. P. 309. doi: 10.1016/j.ejmech.2016.07.047
  6. Tratrat Ch., Haroun M., Tsolaki E., Petrou A., Gavalas A., Geronikaki A. // Curr. Top. Med. Chem. 2021. Vol. 21. N 4. P. 257. doi: 10.2174/1568026621999201214232458
  7. Gartel A. // Front. Oncology. 2013. Vol. 3. P. 150. doi: 10.3389/fonc.2013.00150
  8. Pandit B., Bhat U.G., Gartel A.L. // Cancer Biol. Ther. 2011. Vol. 11. N 1. P. 43. doi: 10.4161/cbt.11.1.13854
  9. Gürsoy E., Dincel E.D., Naesens L., Ulusoy Güzeldemirci N. // Bioorganic Chemistry. 2020. Vol. 95. P. 103496. doi: 10.1016/j.bioorg.2019.103496
  10. Chumakov V.A., Demchenko A.M., Krasovskii A.N., Bukhtiarova T.A., Mel'nichenko O.A., Trinus F.P., Lozinskii M.O. // Pharm. Chem. J. 1999. Vol. 33. P. 421. doi: 10.1007/BF02510093
  11. He C., Parrish D.A., Shreeve J.M. // Chem. Eur. J. 2014. Vol. 20. P. 6699. doi: 10.1002/chem.201402176
  12. Yin Z., Wang Q.-X., Zeng M.-H. // J. Am. Chem. Soc. 2012. Vol. 134. P 4857. doi: 10.1021/ja211381e
  13. Starkholm A., Kloo L., Svensson P.H. // ACS Appl. Energy Mater. 2019. Vol. 2. P. 477. doi: 10.1021/acsaem.8b01507
  14. Шестимерова Т.А., Быков М.А., Вей Ж., Дикарев Е.В., Шевельков А.В. // Изв. АН. Сер. хим. Т. 68. № 8. С. 1520
  15. Shestimerova T.A., Bykov M.A., Wei Z., Dikarev E.V., Shevelkov A.V. // Russ. Chem. Bull. 2019. Vol. 68. P. 1520. doi: 10.1007/s11172-019-2586-0
  16. Shestimerova T.A., Mironov A.V., Bykov M.A., Grigorieva A.V., Wei Z., Dikarev E.V., Shevelkov A.V. // Molecules. 2020. Vol. 25. P. 2765. doi: 10.3390/molecules25122765
  17. Savastano M., Bazzicalupi C., Gellini C., Bianchi A. // Crystals. 2020. Vol. 10. doi: 10.3390/cryst10050387
  18. Tanaka E., Robertson N. // J. Mater. Chem. (A). 2020. Vol. 8. P. 19991. doi: 10.1039/D0TA07377F
  19. Usoltsev A.N., Moneim E., Adonin S.A., Frolova L.A., Derzhavskaya T., Abramov P.A., Anokhin D.V., Korolkov I.V., Luchkin S.Yu., Dremova N.N., Stevenson K.J., Sokolov M.N., Fedin V.P., Troshin P.A. // J. Mater. Chem. (A). 2019. Vol. 7. P. 5957.
  20. Yin Z., Wang Q.X., Hua Zeng M. // J. Am. Chem. Soc. 2012. Vol. 134. N 10. P. 4857. doi: 10.1021/ja211381e
  21. Bogolyubskii V.A., Bogolyubskaya L.T. // Chem. Heterocycl. Compd. 1967. Vol. 3. P. 519. doi: 10.1007/BF00481589
  22. Bradsher C.K., Jones Jr. W.J. // Recl. Trav. Chim. Pays-Bas. 1968. Vol. 87. P. 274. doi: 10.1002/recl.19680870306
  23. Ohtsuka H., Toyofuku H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3234. doi: 10.1248/cpb.23.3234
  24. Ohtsuka H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3243. doi: 10.1248/cpb.23.3243
  25. Ohtsuka H., Miyasaka T., Arakawa K. // Chem. Pharm. Bull. 1975. Vol. 23. P. 3254. doi: 10.1248/cpb.23.3254
  26. Aakeroy Ch.B., Bryce D.L., Desiraju G.R., Frontera A., Legon A.C., Nicotra F., Rissanen K., Scheiner S., Terraneo G., Metrangolo P., Resnati G. // Pure Appl. Chem. 2019. Vol. 91. N. 11. P. 1889. doi: 10.1515/pac-2018-0713
  27. Cavallo G., Metrangolo P., Pilati T., Resnati G., Terraneo G. // Cryst. Growth Des. 2014. Vol. 14. N 6. P. 2697. doi: 10.1021/cg5001717
  28. Bol'shakov O.I., YushinaI.D., Stash A.I., Aysin R.R., Bartashevich E.V., Rakitin O.A. // Struct Chem. 2020. Vol. 31. P. 1729. doi: 10.1007/s11224-020-01584-y
  29. Yushina I.D., Tarasova N.M., Kim D.G., Sharutin V.V., Bartashevich E.V. // Crystals. 2019.Vol. 9. P. 506. doi: 10.3390/cryst9100506
  30. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
  31. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
  32. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A. K., Puschmann H. // J. Appl. Cryst. 2009. Vol. 42. P. 339. doi: 10.1107/S0021889808042726
  33. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rerat M., Casassa S., Baima J., Salustro S., Kirtman B. // WIREs Comput Mol Sci. 2018. Vol. 8. P. e1360. doi: 10.1002/wcms.1360
  34. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi: 10.1063/1.464913
  35. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. N 2. P. 785. doi: 10.1103/PhysRevB.37.785
  36. Gatti C., Saunders V.R., Roetti C. // J. Chem. Phys. 1994. Vol. 101. P. 10686. doi: 10.1063/1.467882
  37. Monkhorst H.J., Pack J.D. // Phys. Rev. (B). 1976. Vol. 13. P. 5188. doi: 10.1103/PhysRevB.13.5188

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies