Determination of the Charge State of Transition Metal Ions in Pyrochlore Bi2Cu1/3Ni1/3Co1/3Ta2O9±δ by X-Ray Absorption Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cubic pyrochlore Bi2Cu1/3Ni1/3Co1/3Ta2O9±δ [space group Fd-3m, a = 10.5323(8) Å] was synthesized from oxides for the first time using the solid-phase reaction method. The ceramics are characterized by a low-porosity grain-free microstructure. The chemical state of transition element cations in multi-element pyrochlore was characterized using photoelectron spectroscopy (XPS) and NEXAFS. For pyrochlore, a characteristic shift of the Ta4f spectrum to lower energies by 0.65 eV is observed, which causes the effective charge of tantalum cations +(5–δ). It is shown that the NEXAFS Cu2p spectra of oxide ceramics, according to the main characteristics of the spectrum, represent a superposition of the spectra of Cu(I) and Cu(II) cations. Based on the analysis of the relative intensity of the peaks in the XPS spectrum of Cu2p, the quantitative ratio of Cu(I)/Cu(II) cations in pyrochlore is 1.06. The NEXAFS Ni2p spectrum of ceramics coincides with the spectrum of NiO according to the main characteristics of the spectrum. XPS studies indicate the state of Ni(III). According to the nature of the Co2p spectrum, cobalt ions are in the state of Co(II,III).

About the authors

K. N. Parshukova

Pitirim Sorokin Syktyvkar State University

Email: kristinaparshukova17@gmail.com
Syktyvkar, 167001 Russia

S. V. Nekipelov

Institute of Physics and Mathematics, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

A. M. Lebedev

National Research Center "Kurchatov Institute"

Moscow, 123182 Russia

B. A. Makeev

Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

R. I. Korolev

Pitirim Sorokin Syktyvkar State University

Syktyvkar, 167001 Russia

N. A. Zhuk

Pitirim Sorokin Syktyvkar State University

Syktyvkar, 167001 Russia

References

  1. Hiroi Z., Yamaura J.-I., Yonezawa S., Harimaп H. // Physica (C). 2007. Vol. 460–462. P. 20. doi: 10.1016/j.physc.2007.03.023
  2. Giampaoli G., Siritanon T., Day B., Subramanian M.A. // Prog. Solid State Chem. 2018. Vol.50, P. 16. doi: 10.1016/j.progsolidstchem.2018.06.001
  3. Du H., Yao X. // J. Mater. Sci. Mater. Electron. 2004. Vol. 15. P. 613. doi: 10.1023/B:JMSE.0000036041.84889.b2
  4. Murugesan S., Huda M.N., Yan Y., Al-Jassim M.M., Subramanian V. // J. Phys. Chem. (C). 2010. Vol. 114. P. 10598. doi: 10.1021/j.p906252r
  5. Lufaso M.W., Vanderah T.A., Pazos I.M., Pazos Il.M., Levin I., Roth R.S., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3900. doi: 10.1016/j.jssc.2006.08.036
  6. Vanderah T.A., Lufaso M.W., Adler A.U., Levin I., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3467. doi: 10.1016/j.jssc.2006.07.014
  7. Levin I., Amos T.G., Nino J.C., Vanderah T.A., Randall C.A., Lanagan M.T. // J. Solid State Chem. 2002. Vol. 168. P. 69. doi: 10.1006/jssc.2002.9681
  8. Nguyen H.B., Noren L., Liu Y., Withers R., Wei X., Elcombe M.M. // J. Solid State Chem. 2007. Vol. 180. P. 2558. doi: 10.1016/j.jssc.2007.07.003
  9. Vanderah T.A., Siegrist T., Lufaso M.W., Yeager M.C., Roth R.S., Nino J.C., Yates S. // Eur. J. Inorg. Chem. 2006. P. 4908. doi: 10.1002/ejic.200600661
  10. Zhuk N.A., Sekushin N.А., Krzhizhanovskaya M.G., Kharton V.V. // Solid State Ionics. 2022. Vol. 377. P. 115868. doi: 10.1016/j.ssi.2022.115868
  11. Zhuk N.A., Sekushin N.A., Semenov V.G., Fedorova A.V., Selyutin A.A., Krzhizhanovskaya M.G., Lutoev V.P., Makeev B.A., Kharton V.V., Sivkov D.N., Shpynova A.D. // J. Alloys Compd. 2022. Vol. 903. P. 163928. doi: 10.1016/j.jallcom.2022.163928
  12. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol.15, P. 55. doi: 10.1016/0079-6786(83)90001-8
  13. Kamba S., Porokhonskyy V., Pashkin A., Bovtun V., Petzelt J., Nino J.C., Trolier-McKinstry S., Lanagan M.T., Randall C.A. // Phys. Rev. (B). 2002. Vol. 66. P. 054106. doi: 10.1103/PhysRevB.66.054106
  14. Valant M. // J. Am. Ceram. Soc. 2009. Vol. 92. P. 955. doi: 10.1111/j.1551-2916.2009. 02984.x
  15. Rylchenko E.P., Makeev B.A., Sivkov D.V., Korolev R.I., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 486. doi: 10.22226/2410-3535-2022-4-486-492
  16. Parshukova K.N., Sekushin N.A., Makeev B.A, Krzhizhanovskaya M.G., Koroleva A.V., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 469. doi: 10.22226/2410-3535-2022-4-469-474
  17. Akselrud L.G., Grin Y.N., Zavalii P.Y., Pecharsky V.K., Fundamenskii V.S. // Thes. Rep. XII Eur. Crystallogr. Meet. 1989. P. 155.
  18. Zhuk N.A., Krzhizhanovskaya M.G., Koroleva A.V., Koroleva A.V., Nekipelov S.V., Kharton V.V., Sekushin N.A. // Inorg. Chem. 2021. Vol. 60. P. 4924. doi: 10.1021/acs.inorgchem.1c00007
  19. Zhuk N.A., Krzhizhanovskaya M.G., Sekushin N.A., Sivkov D.V., Abdurakhmanov I.E. // J. Mater. Res. Technol. 2023. Vol. 22. P. 1791. doi: 10.1016/j.jmrt.2022.12.059
  20. Shannon R.D. // Acta Crystallogr. (А). 1976. Vol. 32. P. 751. doi: 10.1107/S0567739476001551
  21. Hassel M., Freund H.-J. // Surface Science Spectra. 1996. Vol. 4. P. 273. doi: 10.1116/1.1247797
  22. Regan T.J., Ohldag H., Stamm C., Nolting F., Lüning J., Stöhr J., White R.L. // Phys. Rev. (B). 2001. Vol. 64. P. 214422. doi: 10.1103/PhysRevB.64.214422
  23. Mansour A.N., Melendres C.A. // Surface Science Spectra. 1994. Vol. 3. P. 263. doi: 10.1116/1.1247755
  24. Preda I., Abbate M., Gutiérrez A., Palacín S., Vollmer A., Soriano L. // J. Electron Spectrosc. 2007. Vol. 156–158. P. 111. doi: 10.1016/j.elspec.2006.11.030
  25. Barreca D., Gasparotto A., Tondello E. // Surface Science Spectra 2007. Vol. 14. P. 41. doi: 10.1116/11.20080701
  26. Grioni M., van Acker J.F., Czyžyk M.T., Fuggle J.C. // Phys. Rev. (B). 1992. Vol. 45. P. 3309. https:// doi.org/10.1103/physrevb.45.3309

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».