Extraction and sorption recovery of rhenium(VII) using oligodentate β-аminophosphoryl compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interphase distribution of microquantities of ReO4 between aqueous solutions of mineral acids and solutions of oligodentate β-aminophosphoryl compounds in organic solvents was studied. The stoichiometry of the extracted complexes was determined, the influence of the concentration of HClO4, HNO3, HCl and H2SO4 in the aqueous phase, the structure of the extractant and the nature of the organic solvent on the efficiency of the transition of ReO4 ions into the organic phase was considered. The possibility of selective extraction and concentration of Re(VII) with a complexing sorbent obtained by non-covalent attachment of tris[bis(2-diphenylphosphorylethyl)aminoethyl]amine on the surface of the macroporous polymer Amberlite XAD7HP was demonstrated.

Full Text

Restricted Access

About the authors

A. N. Turanov

Yu. A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Author for correspondence.
Email: matveeva@gmail.com
ORCID iD: 0000-0002-5064-191X
Russian Federation, Chernogolovka, 142432

V. K. Karandashev

Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences

Email: matveeva@gmail.com
ORCID iD: 0000-0003-0684-272X
Russian Federation, Chernogolovka, 142432

O. I. Artyushin

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@gmail.com
ORCID iD: 0000-0001-6333-5973
Russian Federation, Moscow, 119334

E. V. Smirnova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@gmail.com
ORCID iD: 0000-0002-7161-4793
Russian Federation, Moscow, 119334

References

  1. Палант А.А., Трошкина И.Д., Чекмарев А.М., Костылев А.И. Технология рения. М.: ООО «Галлея – Принт». 2015. С. 172.
  2. Касиков А.Г., Петрова А.М. // Технология металлов. 2010. № 2. С. 2.
  3. Касиков А.Г., Петрова А.М. // Хим. технол. 2008. Т. 9. № 8. С. 376.
  4. Shen L., Tesfaye F., Li X., Lindberg D., Taskinen P. // Minerals Eng. 2021. Vol. 161. P. 106719. doi: 10.1016/j.mineng.2020.106719
  5. Cheema H.A., Ilya S., Masud S., Mushan M.A., Mahnood I., Lee J.C. // Sep. Pur. Technol. 2018. Vol. 191. P. 116. doi: 10.1016/j.seppur.2017.09.021
  6. Petrova A.M., Kasikov A.G. // Hydrometallurgy. 2016. Vol. 165. P. 270. doi: 10.1016/j.hydromet.2016.01.033
  7. Srivastava R.R., Kim M., Lee J., Ilyas S. // Hydrometallurgy. 2015. Vol. 157. P. 33. doi: 10.1016/j.hydromet.2015.07.011
  8. Hong I., Liu M., Ma J., Yang G., Li L., Mumford K.A., Stevens G.W. // Sep. Pur. Technol. 2020. Vol. 236. P. 116281. doi: 10.1016/j.seppur.2019.116281
  9. Fang D.-W., Song Z.-R., Zhang S.-C., Li J., Zang S.-L. // J. Chem. Eng. Data. 2017. Vol. 62. P. 1094. doi: 10.1021/acs.jced.6b00909
  10. Zhou C.-B., Zhan D.-S. // J. Chem. Eng. Data. 2020. Vol. 65. P. 1468. doi: 10.1021/acs.jced.9b00885
  11. Kabay N., Cortina J.L., Trochimczuk A., Streat K.M. // React. Funct. Polymers. 2010. Vol. 70. P. 484. doi: 10.1016/j.reactfunctpolym.2010.01.005
  12. Туранов А.Н., Карандашев В.К., Баулин В.Е. // ЖНХ. 2006. Т. 51. № 4. С. 735; Turanov A.N., Karandashev V.K., Baulin V.E. // Russ. J. Inorg. Chem. 2006. Vol. 51. N 4. P. 676. doi: 10.1134/S0036023606040292
  13. Трошкина И.Д., Веселова О.А., Вацура Ф.Я., Захарьян С.В., Серикбай А.У. // Изв. вузов. Цветн. металлург. 2017. № 5. С. 42. doi: 10.17073/0021-3438-2017-5-42-49
  14. Guo X., Ma Z., Li D., Yu D. // J. Mol. Liq. 2020. Vol. 297. 111901. doi: 10.1016/j.molliq.2019.111901
  15. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // ЖНХ. 2004. Т. 49. № 8. С. 1390.
  16. Туранов А.Н., Карандашев В.К., Бондаренко Н.А. // ЖНХ. 2013. Т. 58. № 5. С. 668; Turanov A.N., Karandashev V.K., Bondarenko N.A. // Russ. J. Inorg. Chem. Vol. 58. P. 590. doi: 10.1134/S0036023613050239
  17. Шмидт В.С. // Усп. хим. 1987. Т. 56. № 8. С. 1387; Shmidt V.S. // Russ. Chem. Rev. 1987. Vol. 56. P. 792. doi: 10.1070/RC1987v056n08ABEH003307
  18. Yurdakos M., Seki Y., Karahan S., Yuedakos S.K. // J. Colloid Interface Sci. 2005. Vol. 286. P. 440. doi: 10.1016/j.jcis.2004.12.047
  19. Song Q., Ma L., Liu J., Bai C., Geng J., Wang H., Li B., Wang L., Li S. // J. Colloid Interface Sci. 2012. Vol. 386. P. 291. doi: 10.1016/j.jcis.2012.07.070
  20. Matveeva E.V., Petrovskii P.V., Klemenkova Z.S., Bondarenko N.A., Odinets I.L. // Comp. Rend. Ch. 2010. Vol. 13. P. 964. doi: 10.1016/j.crci.2010.03.005
  21. Matveeva E.V., Sharova E.V., Turanov A.N., Karandashev V.K., Odinets I.L. // Centr. Eur. J. Chem. 2012. Vol. 10. P. 1933. doi: 10.2478/s11532-012-0124-0
  22. Horwitz E.P., Dietz M.L., Nelson D.M., LaRosa J.J., Fairman W.D. // Anal. Chim. Acta. 1990. Vol. 238. P. 263. doi: 10.1016/S0003-2670(00)80546-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the rhenium distribution coefficient on the pH of the equilibrium aqueous phase during extraction of 0.0002 M. with a solution of compound 8 in dichloroethane at a constant concentration of Cl–(0.1 M.) ions in the aqueous phase.

Download (44KB)
3. Рис. 2. Зависимость коэффициента распределения рения от концентрации ионов H+ в равновесной водной фазе при экстракции 0.0002 М. раствором соединения 8 в дихлорэтане при экстракции из растворов H2SO4 (1), HCl (2), HNO3 (3) и HClO4 (4).

Download (62KB)
4. Fig. 3. Dependence of the rhenium distribution coefficient on the concentration of extractants 2, 3, 6-8 in dichloroethane during extraction from 0.1 M HCl solutions.

Download (76KB)
5. 4. The distribution of Re(VII) between 0.1 M. HCl solution and 0.002 M. solution of compound 8 in dichloroethane.

Download (55KB)
6. Fig. 5. The effect of phase contact time on the extraction of Re(VII) from 1 m. H2SO4 solution by a polymer sorbent modified with compound 8 (a) at an initial rhenium concentration of 37.2 mg/l (V/m = 300 ml/g) and the dependence of t/qt on t (b).

Download (72KB)
7. Fig. 6. Dependence of the rhenium distribution coefficient on the concentration of H2SO4 (1), HCl (2) and HNO3 (3) in the equilibrium aqueous phase during sorption with a polymer sorbent modified with compound 8 at an initial rhenium concentration of 37.2 mg/l (V/m = 300 ml/g).

Download (61KB)
8. 7. The distribution of Re(VII) between 1 m. H2SO4 solution and polymer sorbent modified compound 8 (V/m = 200 ml/g) (a) and the dependence of [Re]/qe on [Re] (b).

Download (80KB)
9. Scheme 1.

Download (88KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies