Self-Propagating High Temperature Synthesis of Composite Material Based on Zirconium and Chromum Oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ceramic composite materials based on stabilized zirconium oxide were obtained by self-propagating high-temperature synthesis. Yttrium oxide was used as a stabilizing additive. The work studied the effect of the content of yttrium oxide additive on the temperature and combustion rate of the materials studied. Also, based on the results of X-ray phase analysis and scanning electron microscopy, the effect of yttrium oxide on the phase composition and microstructure of the synthesized materials was studied.

Full Text

Restricted Access

About the authors

A. P. Chizhikov

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Author for correspondence.
Email: chij@ism.ac.ru
ORCID iD: 0000-0003-2793-6952
Russian Federation, Chernogolovka, 142432

М. С. Антипов

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Email: chij@ism.ac.ru
ORCID iD: 0000-0002-7498-428X
Russian Federation, Chernogolovka, 142432

A. S. Konstantinov

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Email: chij@ism.ac.ru
ORCID iD: 0000-0002-0524-6283
Russian Federation, Chernogolovka, 142432

A. O. Zhidovich

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Email: chij@ism.ac.ru
Russian Federation, Chernogolovka, 142432

P. M. Bazhin

Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)

Email: chij@ism.ac.ru
ORCID iD: 0000-0003-1710-3965
Russian Federation, Chernogolovka, 142432

References

  1. Shojaie-bahaabad M., Bozorg M., Najafizadeh M., Cavaliere P. // Ceram. Int. 2023. Vol. 50. P. 9937. doi: 10.1016/j.ceramint.2023.12.372
  2. Malinina E.A., Myshletsov I.I., Buzanov G.A., Kubasov A.S., Kozerozhets I.V., Goeva L.V., Nikiforova S.E., Avdeeva V.V., Zhizhin K.Y., Kuznetsov N.T. // Molecules. 2023. N 28. P. 453. doi: 10.3390/molecules28010453
  3. Guria J.F., Bansal A., Kumar V. // J. Eur. Ceram. Soc. 2021. Vol. 41. P. 1. doi: 10.1016/j.jeurceramsoc.2020.08.051
  4. Zhang W., Shi F., Wang J., Yang Y., Zhao G., Zhao D. // J. Eur. Ceram. Soc. 2024. Vol. 44. P. 2329. doi: 10.1016/j.jeurceramsoc.2023.11.007.
  5. Wang Y., Ye J., Li J., Song H., Ye L., Yue X., Ru H. // Ceram. Int. 2024. Vol. 50. P. 1908. doi: 10.1016/j.ceramint.2023.10.293
  6. Cao W., Zhou J., Ren C., Omran M., Gao L., Tang J., Zhang F., Chen G. // J. Mater. Res. Technol. 2023. Vol. 26. P. 4563. doi: 10.1016/j.jmrt.2023.08.183
  7. Авдеева В.В., Полякова И.Н., Вологжанина А.В., Гоева Л.В., Бузанов Г.А., Генералова Н.Б., Малинина Е.А., Жижин К.Ю., Кузнецов Н.Т. // ЖНХ. 2016. Т. 61. С. 1182. doi: 10.7868/S0044457X16090026; Avdeeva V.V., Polyakova I.N., Vologzhanina A.V., Goeva L.V., Buzanov G.A., Generalova N.B., Malinina E.A., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2016. Vol. 61. P. 1125. doi: 10.1134/S0036023616090023
  8. Zhang K., Li S., Liu T., Xiong Z., Zhu Z., Zhang Y., Ullah A., Liao W. // Smart Mater. Manuf. 2024. Vol. 2. Article no. 100048. doi: 10.1016/j.smmf.2024.100048
  9. Fujii S., Shimazaki K., Kuwabara A. // Acta Mater. 2024. Vol. 262. Article no. 119460. doi 10.1016/ j.actamat.2023.119460
  10. Liang Z., Wang W., Zhang M., Wu F., Chen J.-F., Xue C., Zhao H. // Physica (B). 2017. Vol. 511. P. 10. doi 10.1016/ j.physb.2017.01.025.
  11. Mosavari M., Khajehhaghverdi A., Aghdam R.M. // Inorg. Chem. Commun. 2023. Vol. 157. Article no. 111293. doi: 10.1016/j.inoche.2023.111293
  12. Liu L., Wang S., Jiang G., Liu H., Yang J., Li Y. // Mater. Today Chem. 2024. Vol. 35. Article no. 101902. doi: 10.1016/j.mtchem.2024.101902
  13. Kozerozhets I.V., Panasyuk G.P., Azarova L.A., Belan V.N., Semenov E.A., Voroshilov I.L., Danchevskaya M.N. // Theor. Found. Chem. Eng. 2021. Vol. 55. P. 1126. doi: 10.1134/S004057952106004X
  14. Chen G., Ling Y., Li Q., Zheng H., Li K., Jiang Q., Gao L., Omran M., Peng J., Chen J. // Ceram. Int. 2020. Vol. 46. P. 16842. doi: 10.1016/j.ceramint.2020.03.261
  15. Cao W., Zhou J., Ren C., Omran M., Gao L., Tang J., Zhang F., Chen G. // J. Mater. Res. Technol. 2023. Vol. 26. P. 4563. doi: 10.1016/j.jmrt.2023.08.183
  16. Zu J.H., Gao Y., Liu D., Luo W.F., Feng Z., Bao Y., Shang Q.Y., Bai Y., Fan W., Wang Y., Yu F.L. // Ceram. Int. 2024. Vol. 50. P. 20460. doi: 10.1016/j.ceramint.2024.03.169
  17. Baqiah H., Kechik M.M.A., Pasupuleti J., Zhang N., Al-Hada N.M., Chau C.F., Li Q., Xu S. // Results Phys. 2023. Vol. 55. 107194. doi: 10.1016/j.rinp.2023.107194
  18. Díaz-Parralejo A., Maya-Retamar D., Calderón-Godoy M., Sánchez-González J., Ortiz A.J. // Ceram. Int. 2023. Vol. 49. P. 19552. doi: 10.1016/j.ceramint.2023.03.029
  19. Mohsen Q., Al-Gethami W.S., Zaki Z., Alotaibi S.H., Ibrahim M.M., Ezzat M., Amin M.M., Kamel M.M., Mostafa N.Y. // Int. J. Electrochem. Sci. 2022. Vol. 17. 22073. doi: 10.20964/2022.07.24
  20. Козерожец И.В., Панасюк Г.П., Семенов Е.А., Ворошилов И.Л., Азарова Л.А., Белан В.Н. // Неорг. матер. 2020. Т. 56. С. 755. doi: 10.31857/S0002337X2007009X; Kozerozhets I.V., Panasyuk G.P., Semenov E.A., Voroshilov I.L., Azarova L.A., Belan V.N. // Inorg. Mater. 2020. Vol. 56. P. 716. doi: 10.1134/S002016852007009
  21. Liu L., Wang S., Zhang B., Jiang G., Yang J. // J. Alloys Compd. 2022. Vol. 898. Article no. 162878. doi 10.1016/ j.jallcom.2021.162878
  22. Irankhah R., Mobasherpour I., Alizadeh M., Nezhad S.M.M., Nikzad L., Azar S.S. // Ceram. Int. 2023. Vol. 49. P. 2681. doi: 10.1016/j.ceramint.2022.09.248
  23. Katea S.N., Westin G. // Ceram. Int. 2021. Vol. P. 10828. doi: 10.1016/j.ceramint.2020.12.200.
  24. Shon I.J. // Ceram. Int. 2016. Vol. 42. P. 13314. doi: 10.1016/j.ceramint.2016.05.060
  25. Лапшин О.В., Болдырева Е.В., Болдырев В.В. // ЖНХ. 2021. Т. 66. С. 402. doi: 10.31857/S0044457X21030119; Lapshin O.V., Boldyreva E.V., Boldyrev V.V. // Russ. J. Inorg. Chem. 2021. Vol. 66. P. 433. doi: 10.1134/S0036023621030116
  26. Lu N., He G., Yang Z., Yang X., Li Y., Li J. // Ceram. Int. 2022. Vol. 48. P. 7261. doi: 10.1016/j.ceramint.2021.11.286
  27. Томилин О.Б., Мурюмин Е.Е., Фадин М.В., Щипакин С.Ю. // ЖНХ. 2022. Т. 67. С. 457. doi: 10.31857/S0044457X22040195; Tomilin O.B., Muryumin E.E., Fadin M.V., Shchipakin S.Yu // Russ. J. Inorg. Chem. 2022. Vol. 67. P. 431. doi: 10.1134/S0036023622040192
  28. Козерожец И.В., Панасюк Г.П., Семенов Е.А., Данчевская М.Н., Ивакин Ю.Д., Цветов Н.С. // Неорг. матер. 2021. Т. 57. С. 621. doi: 10.31857/S0002337X21060051; Kozerozhets I.V., Panasyuk G.P., Semenov E.A., Danchevskaya M.N., Ivakin Yu.D., Tsvetov N.S. // Inorg. Mater. 2021. Vol. 57. P. 592. doi: 10.1134/S0020168521060054
  29. Bazhin P.M., Kostitsyna E.V., Chizhikov A.P., Konstantinov A.S., Neganov L.E., Stolin A.M. // J. Alloys Compd. 2021. Vol. 856. 157576. doi 10.1016/ j.jallcom.2020.157576
  30. Stolin A.M., Bazhin P.M., Konstantinov A.S., Chizhikov A.P., Kostitsyna E.V., Bychkova M.Y. // Ceram. Int. 2018. Vol. 44. P. 13815. doi: 10.1016/j.ceramint.2018.04.225
  31. Чижиков А.П., Константинов А.С., Бажин П.М. // ЖНХ. 2021. Т. 66. С. 1002. doi: 10.31857/S0044457X21080031; Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. Vol. 66. P. 1115. doi: 10.1134/S0036023621080039
  32. Столин А.М., Бажин П.М., Алымов М.И. // Неорг. матер. 2016. Т. 52. С. 672. doi: 10.7868/S0002337X16060166; Stolin A.M., Bazhin P.M., Alymov M.I. // Inorg. Mater. 2016. Vol. 52. P. 618. doi: 10.1134/S0020168516060169
  33. Bazhin P.M., Kovalev D.Yu., Luginina M.A., Averichev O.A. // Int. J. Self-Propagating High-Temp. Synth. 2016. Vol. 25. P. 30. doi: 10.3103/S1061386216010027
  34. Bazhin P., Chizhikov A., Stolin A., Antipov M., Konstantinov A. // Ceram. Int. 2021. Vol. 47. P. 28444. doi: 10.1016/j.ceramint.2021.06.262
  35. Liu T., Zhang X., Wang X. // Ionics. 2016. Vol. 22. P. 2249. doi: 10.1007/s11581-016-1880-1
  36. Wang J., Wang Y., Lu X. // J. Eur. Ceram. Soc. 2023. Vol. 43. P. 5636. doi: 10.1016/j.jeurceramsoc.2023.05.020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the state of the ZrO2–Y2O3 system [35] (a) and the dependence of the temperature (1) and gorenje rate of the studied materials (2) on the content of Y2O3 (b).

Download (223KB)
3. Fig. 2. The scheme of experiments to measure the combustion characteristics of the studied materials: 1 – the initial blank, 2 – asbestos insulation, 3 – quartz glass, 4 - ceramic tube, 5 – thermocouples, 6 – initiating spiral, 7 – substrate. Gorenje.

Download (70KB)
4. Fig. 3. X-ray images of samples No. 0, 1, 5, 9.

Download (182KB)
5. Fig. 4. SEM results of the obtained composite materials: (a), (c) – morphology of powders of compositions 0 and 5; (b), (d) – microstructure of powders of compositions 0 and 5; (e) – microstructure and results of EDA analysis of sample 9. Results EDAS are given in % by weight.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies