Structural-Mechanical Modification of Amorphous Polyethylene Terephthalate and Hybrid Nanocomposite Materials Based on It

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hybrid nanocomposite materials based on polyethylene terephthalate and inorganic flame-retardant diammonium phosphate were prepared according to the fundamental strategy of environmental crazing of polymers. Structural-mechanical modification of the initial amorphous polyethylene terephthalate and the resultant nanocomposite polyethylene terephthalate-based was carried out by rolling at room temperature. The effect of preliminary rolling on the deformation behavior of polyethylene terephthalate during subsequent stretching in air and in physically active liquid media was established.

Full Text

Restricted Access

About the authors

A. A. Dolgova

Lomonosov Moscow State University

Author for correspondence.
Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-0551-6124
Russian Federation, Moscow

D. N. Stolbov

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
Russian Federation, Moscow

S. A. Sorochinskaya

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
Russian Federation, Moscow

A. S. Zaikin

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
Russian Federation, Moscow

A. Yu. Yarusheva

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0003-4997-6883
Russian Federation, Moscow

S. V. Savilov

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-5827-3912
Russian Federation, Moscow

L. M. Yarusheva

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
Russian Federation, Moscow

O. V. Arzhakova

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-8811-5528
Russian Federation, Moscow

References

  1. Roesler J., Harders H., Baeker M. Mechanical behavior of engineering materials: metals, ceramics, polymers, and composites. New York: Springer, 2007.
  2. Ward I.M., Hadley D.N. An introduction to the mechanical properties of solid polymers. New York: John Wiley & Sons, 1993.
  3. Boyce M.C., Parks D.M., Argon A.S. // Mech. Mater. 1988. Vol. 7. P. 15.
  4. Аржакова О.В., Долгова А.А., Чернов И.В., Ярышева Л.М., Волынский А.Л. // Высокомол. Соед. (А). 2007. Т. 49. № 7. С. 1502.
  5. Efimov A.V., Bazhenov S.L., Tyun’kin I.V., Volynskii A.L., Bakeev N.F. // Polym. Sci. (A). 2013. Vol. 55. N 12. P. 721. doi: 10.1134/S0965545X13120055
  6. Van Melick H.G.H., Govaert L.E., Raas B., Nauta W.J., Meijer H.E.H. // Polymer. 2003. Vol. 44. N 4. P. 1171. doi: 10.1016/S0032-3861(02)00863-7
  7. Serenko O.A., Tyun’kin I.V., Efimov A.V., Bazhenov S.L. // Polym. Sci. (A). 2007. Vol. 49. P. 69. doi: 10.1134/S0965545X07060090
  8. Tian С., Dai L., Song D., Lei D., Xiao R. // Mech. Mater. 2022 Vol. 165. P. 104138. doi: 10.1016/j.mechmat.2021.104138
  9. Padhye N. // Mech. Mater. 2023. Vol. 184. P. 104733. doi: 10.1016/j.mechmat.2023.104733
  10. Narisawa I. // Polym. Eng. Sci. 1987. Vol. 27. P. 41. doi: 10.1002/pen.760270107
  11. Kitagawa M. // J. Mat. Sci. 1982. Vol. 17. P. 2514. doi: 10.1007/BF00543882
  12. Аржакова О.В., Аржаков М.С., Бадамшина Э.Р., Брюзгина Е.Б., Брюзгин Е.В., Быстрова А.В., Ваганов Г.В., Василевская В.В., Вдовиченко А.Ю., Галлямов М.О., Гумеров Р.А., Диденко А.Л., Зефиров В.В., Карпов С.А., Музафаров А.М., Молчанов В.С., Навроцкий А.В., Новаков И.А., Панарин Е.Ф., Cедуш Н.Г., Серенко О.А., Успенский С.А., Филиппова О.Е., Хохлов А.Р., Чвалун С.Н., Шейко С.С., Шибаев А.В., Эльманович И.В., Юдин В.Е., Якиманский А.В., Ярославов А.А. // Усп. хим. 2022. Т. 91. № 12. RCR 5062; Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaganov G.V., Vasilevskaya V.V., Vdovichenko A.Y., Gallyamov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kurochkin S.A., Larin S.V., Malkin A.Y., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V.,Yaroslavov A.A. // Russ. Chem. Rev. 2022. Vol. 3. N 12. RCR 5062. doi: 10.57634/RCR5062
  13. Баженов С.Л., Ефимов А.В., Бобров А.В., Кечекьян А.С., Гроховская Т.Е. // Высокомол. Соед. (А). 2015. Т. 57. № 3. С. 230; Bazhenov S.L., Efimov A.V., Bobrov A.V., Kechek’yan A.S., Grokhovskaya T.E. // Polym. Sci. (A). 2015. Vol. 57. N 3. P. 285. doi: 10.1134/S0965545X15030037
  14. Hutchinson J.M. The physics of glassy polymers. London: Chapman and Hall, 1997.
  15. Wishino T., Nozawa A., Kotera M., Nakamaea K. // Rev. Sci. Instrum. 2000. Vol. 71. N 5. P. 2094. doi: 10.1063/1.1150585
  16. Аржакова О.В., Копнов А.Ю., Чаплыгин Д.К., Ярышева А.Ю., Долгова А.А. // ЖОХ. 2022. Т. 92. № 10. C. 1592; Arzhakova O.V., Kopnov A.Yu., Chaplygin D.K., Yarysheva A.Yu., Dolgova A.A. // Russ. J. Gen. Chem. 2022. Vol. 92. N 10. P. 1963. doi: 10.1134/S1070363222100103
  17. Yarysheva L.M, Yarysheva A.Yu., Volynskii A.L. // Russ. J. Gen. Chem. 2019. Vol. 89. N 10. P. 2092. doi: 10.1134/S1070363219100165
  18. Arzhakova O.V., Dolgova A.A., Kopnov A.Yu., Nazarov A.I., Yarysheva A.Yu., Sazhnikov V.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 737. doi: 10.1134/S1070363220040271

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scanning electron micrographs of the spall (a) and surface (b) of initial polyethylene terephthalate deformed at 100% in physically active liquid media. The arrow indicates the direction of deformation in physically active liquid media

Download (280KB)
3. Fig. 2. Scanning electron micrographs of chips (a, c, e) and surfaces (b, d, f) of polyethylene terephthalate samples deformed in physically active liquid media up to 100% in 1 (a, b), 24 (c, d) and 48 h (e, f) after pre-deformation by 25% at room temperature. Arrows indicate the direction of deformation in physically active liquid media; the direction of deformation in physically active liquid media coincides with the rolling direction

Download (627KB)
4. Fig. 3. Dynamometric curves of polyethylene terephthalate samples in tension in air (1-3) and in physically active liquid media (4-6) 24 h after rolling. Degrees of pre-deformation of samples, %: 0 (1, 4), 25 (2, 5) и 50 (3, 6)

Download (145KB)
5. Fig. 4. Dependence of relative stress reduction in yield stress (1) and steady-state strain development (2) during tensile stretching of polyethylene terephthalate samples in physically active liquid media on the degree of polymer pre-deformation at room temperature

Download (93KB)
6. Fig. 5. Scanning electron micrographs of a chipped sample of polyethylene terephthalate-diammonium phosphate hybrid nanocomposite materials (a) and a map of the distribution of phosphorus atoms in the chip (white dots) (b)

Download (361KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies