4,7-(bis(octyloxy)-3-(quinoline-2-ylmethylene)isoindoline-1-one and its boronflouride complex. synthesis and spectral-luminescent properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

4,7-Bis(octyloxy)isoindoline-1,3-dione was obtained by reacting 3,6-bis(octyloxy)phthalonitrile with sodium butoxide in butanol, followed by treatment with hydrochloric acid. Its condensation with quinaldine in the presence of zinc oxide leads to the formation of ( E , Z )-4,7-bis(octyloxy)-3-(quinolin-2-ylmethylene)isoindolin-1-one, which was treated with BF3۰Et2O in the presence of triethylamine in toluene to give a new unsymmetrical analogue of BODIPY - ( Z )-2-(difluoroboryl)-4,7-bis(octyloxy)-3-(quinolin-2-ylmethylene)isoindolin-1-one. The complex exhibits a Stokes shift of 25 nm and a high relative fluorescence quantum yield (0.68). To support the experimental data, DFT and TD-DFT calculations were performed.

Sobre autores

A. Nabasov

Ivanovo State University of Chemistry and Technology

Email: kolosaner@mail.ru

T. Rumyantseva

Ivanovo State University of Chemistry and Technology

V. Aleksandriiskii

Ivanovo State University of Chemistry and Technology

N. Galanin

Ivanovo State University of Chemistry and Technology

Bibliografia

  1. Ziessel R., Ulrich G., Harriman A. // New J. Chem. 2007. Vol. 31. N 4. P. 496. doi: 10.1039/B617972J
  2. Loudet A., Burgess K. // Chem. Rev. 2007. Vol. 107. N 11. P. 4891-4932. doi: 10.1021/cr078381n
  3. Schmitt A., Hinkeldey B., Wild M., Jung G. // J. Fluoresc. 2009. Vol. 19. N 4. P. 755-758. doi: 10.1007/s10895-008-0446-7
  4. Молчанов Е.Е., Марфин Ю.С., Ксенофонтов А.А., Румянцев Е.В. // Изв. вузов. Сер. хим. и хим. технол. 2019. Т. 62. № 12. С. 13. doi: 10.6060/ivkkt.20196212.6017.
  5. Parhi A.K., Kung M.-P., Ploessl K., Kung H.F. // Tetrahedron Lett. 2008. Vol. 49. N 21. P. 3395. doi: 10.1016/j.tetlet.2008.03.130
  6. Wang H.-Q., Ye J.-T., Zhang Y., Zhao Y.-Y., Qiu Y.-Q. // J. Mater. Chem. (C). 2019. Vol. 7. N 25. P. 7531. doi: 10.1039/C9TC01750J
  7. Squeo B.M., Ganzer L., Virgili T., Pasini M. // Molecules. 2021. Vol. 26. N 1. Article no. 153. doi: 10.3390/molecules26010153
  8. Raveendran A.V., Sankeerthana P.A., Jayaraj A., Chinna Ayya Swamy P. // Res. Chem. 2022. Vol. 4. Article no. 100297. doi: 10.1016/j.rechem.2022.100297
  9. Malacarne M.C., Gariboldi M.B., Caruso E. // Int. J. Mol. Sci. 2022. Vol. 23. N 17. Article no. 10198. doi: 10.3390/ijms231710198
  10. Liu H., Lu H., Zhou Z., Shimizu S., Li Z., Kobayashi N., Shen Z. // Chem. Commun. 2015. Vol. 51. N 9. P. 1713. doi: 10.1039/C4CC06704E
  11. Wu Y., Lu H., Wang S., Li Z., Shen Z. // J. Mater. Chem. (C). 2015. Vol. 3. N 47. P. 12281. doi: 10.1039/c5tc03084f
  12. Yu C., Fang X., Wu Q., Jiao L., Sun L., Li Z., So P.-K., Wong W.-Y., Hao E. // Org. Lett. 2020. Vol. 22. N 12. P. 4588. doi: 10.1021/acs.orglett.0c00940
  13. Zhang X.F., Zhang G.Q., Zhu J. // J. Fluoresc. 2019. Vol. 29. N 1. P. 407. doi: 10.1007/s10895-019-02349-5
  14. Yue J., Wang N., Wang J., Tao Y., Wang H., Liu J., Zhang J., Jiao J., Zhao W. // Anal. Meth. 2021. Vol. 13. N 26. P. 2908. doi: 10.1039/D1AY00740H
  15. Cao T., Gong D., Zheng L., Wang J., Qian J., Liu W., Cao Y., Iqbal K., Qin W., Iqbal A. // Anal. Chim. Acta. 2019. Vol. 1078. P. 168. doi: 10.1016/j.aca.2019.06.033
  16. He H., Lo P.-C., Yeung S.-L., Fong W.-P., Ng D.K.P. // Chem. Commun. 2011. Vol. 47. N 16. P. 4748. doi: 10.1039/C1CC10727E
  17. Gut A., Ciejka J., Makuszewski J., Majewska I., Brela M., Łapok Ł. // Spectrochim. Acta (A). 2022. Vol. 271. Article no. 120898. doi: 10.1016/j.saa.2022.120898
  18. Duran-Sampedro G., Agarrabeitia A.R., Garcia-Moreno I., Gartzia-Rivero L., de la Moya S., Bañuelos J., López-Arbeloa Í., Ortiz M.J. // Chem. Commun. 2015, Vol. 51. N 57. P. 11382. doi: 10.1039/C5CC03408F
  19. Zhou Y., Xiao Y., Li D., Fu M., Qian X. // J. Org. Chem. 2008. Vol. 73. N 4. P. 1571. doi: 10.1021/jo702265x
  20. Nabasov A.A., Koptyaev A.I., Usoltsev S.D., Rumyantseva T.A., Galanin N.E. // Macroheterocycles. 2022. Vol. 15. N 2. P. 128. doi: 10.6060/mhc224262g
  21. Nabasov A.A., Rumyantseva T.A., Koptyaev A.I., Galanin N.E. // Dyes Pigm. 2023. Vol. 219. Article no. 111523. doi: 10.1016/j.dyepig.2023.111523
  22. Галанин Н.Е., Шапошников Г.П. // ЖОХ. 2012. Т. 82. № 10. С. 1736
  23. Galanin N.E., Shaposhnikov G.P. // Russ. J. Gen. Chem. 2012. Vol. 82. N 10. P. 1734. doi: 10.1134/S1070363212100179
  24. Brouwer A.M. // Pure Appl. Chem. 2011. Vol. 83. N 12. P. 2213. doi: 10.1351/PAC-REP-10-09-31
  25. Suzuki K., Kobayashi A., Kaneko S., Takehira K., Yoshihara T., Ishida H., Shiina Y., Oishi S., Tobita S. // Phys. Chem. Chem. Phys. 2009. Vol. 11. N 42. P. 9850. doi: 10.1039/B912178A
  26. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. N 7. P. 5648. doi: 10.1063/1.464913
  27. Rappoport D., Furche F. // J. Chem. Phys. 2010. Vol. 133. N 13. Article no. 134105. doi: 10.1063/1.3484283
  28. Granovsky A.A. Firefly, V. 8.2.0. http://classic.chem.msu.su/gran/gamess/index.html
  29. Andrienko G.A. Chemcraft, V.1.8. http://www.chemcraftprog.com

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies