Development of a complex of doxorubicin with nanoparticles based on sodium alginate and viologen calix[4]resorcinol to increase selectivity of cytotoxic action

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A biocompatible supramolecular system based on sodium alginate and viologen calix[4]resorcinol for encapsulation of doxorubicin hydrochloride (DOX) was obtained. Using a set of physicochemical methods, the polymer- macrocycle ratio was found, at which stable nanoparticles are formed, and their morphological characteristics were determined. It was shown that with an increase in the concentration of calix[4]resorcinol, the size of nanoparticles increases and the zeta potential changes from negative to positive values. It was established that the most optimal supramolecular system for DOX binding is a composition with a macrocycle-polymer ratio of 1:50, and a change in the ratio of components can initiate drug release. The effect of encapsulated DOX on the physicochemical and biological properties of the supramolecular system was shown.

Sobre autores

R. Kashapov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kashapov@iopc.ru

Yu. Razuvaeva

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

A. Ziganshina

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

A. Sapunova

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

A. Voloshina

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

V. Salnikov

Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

L. Zakharova

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Bibliografia

  1. Designed Molecular Space in Material Science and Catalysis / Ed. S. Shirakawa. Singapore: Springer, 2018. P. 183.
  2. Миргородская А.Б., Кушназарова Р.А., Ленина О.А., Петров К.А., Захарова Л.Я. // ЖОХ. 2023. Т. 93. Вып. 3. С. 483
  3. Mirgorodskaya A.B., Kushnazarova R.A., Lenina O.A., Petrov K.A., Zakharova L.Ya. // Russ. J. Gen. Chem. 2023. Vol. 93. P. 593. doi: 10.1134/S1070363223030167
  4. Кушназарова Р.А., Миргородская А.Б., Михайлов В.А., Белоусова И.А., Зубарева Т.М., Прокопьева Т.М., Волошина А.Д., Амерханова С.К., Захарова Л.Я. // ЖОХ. 2022. Т. 92. Вып. 4. С. 630
  5. Kushnazarova R.A., Mirgorodskaya A.B., Mikhailov V.A., Belousova I.A., Zubareva T.M., Prokop'eva T.M., Voloshina A.D., Amerhanova S.K., Zakharova L.Y. // Russ. J. Gen. Chem. 2022. Vol. 92. N 4. P. 659. doi: 10.1134/S1070363222040077
  6. Wang J., Ding X., Guo X. // Adv. Colloid Interface Sci. 2019. Vol. 269. P. 187. doi: 10.1016/j.cis.2019.04.004
  7. Антипин И.С.,Алфимов М.В., Арсланов В.В., Бурилов В.А., Вацадзе С.З., Волошин Я.З., Волчо К.П., Горбачук В.В., Горбунова Ю.Г., Громов С.П., Дудкин С.В., Зайцев С.Ю., Захарова Л.Я., Зиганшин М.А., Золотухина А.В., Калинина М.А., Караханов Э.А., Кашапов Р.Р., Койфман О.И., Коновалов А.И., Коренев В.С., Максимов А.Л., Мамардашвили Н.Ж., Мамардашвили Г.М., Мартынов А.Г., Мустафина А.Р., Нугманов Р.И., Овсянников А.С., Падня П.Л., Потапов А.С., Селектор С.Л., Соколов М.Н., Соловьева С.Е., Стойков И.И., Стужин П.А., Суслов Е.В., Ушаков Е.Н., Федин В.П., Федоренко С.В., Федорова О.А., Федоров Ю.В., Чвалун С.Н., Цивадзе А.Ю., Штыков С.Н., Шурпик Д.Н., Щербина М.А., Якимов Л.С. // Усп. хим. 2021. Т. 90. Вып. 8. С. 895
  8. Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Ya.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Yu.G., Gromov S.P., Dudkin S.V., Zaitsev S.Yu., Zakharova L.Ya., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksimov A.L., Mamardashvili N.Zh., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selektor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Yu.V., Chvalun S.N., Tsivadze A.Yu., Shtykov S.N., Shurpik D.N., Shcherbina M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. Vol. 90. N 8. P. 895. doi: 10.1070/RCR5011
  9. Кашапов Р.Р., Миргородская А.Б., Кузнецов Д.М., Разуваева Ю.С., Захарова Л.Я. // Коллоидн. ж. 2022. T. 84. Вып. 5. С. 503.
  10. Kashapov R.R., Mirgorodskaya A.B., Kuznetsov D.M., Razuvaeva Yu.S., Zakharova L.Ya. // Colloid J. 2022. Vol. 84. P. 502. doi: 10.1134/S1061933X22700016
  11. Razuvayeva Y., Kashapov R., Zakharova L. // Supramol. Chem. 2020. Vol. 32. N 3. P. 178. doi: 10.1080/10610278.2020.1725515
  12. Peng S., Wang K., Guo D.S., Liu Y. // Soft Matter. 2015. Vol. 11. P. 290. doi: 10.1039/c4sm02170c
  13. Wang K., Guo D.-S., Zhao M.-Y., Liu Y. // Chem. Eur. J. 2016. Vol. 22. P. 1475. doi: 10.1002/chem.201303963
  14. Harangozó J.G., Wintgens V., Miskolczy Z., Amiel C., Biczók L. // Colloid. Polym. Sci. 2016. Vol. 294. P. 1807. doi: 10.1007/s00396-016-3947-y
  15. Wintgens V., Guigner J.-M., Miskolczy Z., Amiel C., Biczók L. // Carbohydr. Polym. 2019. Vol. 223. P. 115071. doi: 10.1016/j.carbpol.2019.115071
  16. Jin G., Ngo H.V., Cui J.H., Wang J., Park C., Lee B.J. // Pharmaceutics. 2021. Vol. 13. P. 662. doi: 10.3390/pharmaceutics13050662
  17. Hwang E., Seo S., Bak S., Lee H., Min M., Lee H. // Adv. Mater. 2014. Vol. 26. P. 5129. doi: 10.1002/adma.201401201
  18. Frent O.D., Vicas L.G., Duteanu N., Morgovan C.M., Jurca T., Pallag A., Muresan M.E., Filip S.M., Lucaciu R.L., Marian E. // Int. J. Mol. Sci. 2022. Vol. 23. P. 12108. doi: 10.3390/ijms232012108
  19. Kashapov R., Razuvayeva Y., Ziganshina A., Sapunova A., Lyubina A., Amerhanova S., Kulik N., Voloshina A., Nizameev I., Salnikov V., Zakharova L. // J. Mol. Liq. 2022. Vol. 345. P. 117801. doi: 10.1016/j.molliq.2021.117801
  20. Yoncheva K., Merino M., Shenol A., Daskalov N.T., Petkov P.S., Vayssilov G.N., Garrido M.J. // Int. J. Pharm. 2019. Vol. 556. P. 1. doi: 10.1016/j.ijpharm.2018.11.070
  21. Xue Y., Xia X., Yu B., Luo X., Cai N., Long S., Yu F. // RSC Adv. 2015. Vol. 5. P. 73416. doi: 10.1039/c5ra13313k
  22. Munnier E., Tewes F., Cohen-Jonathan S., Linassier C., Douziech-Eyrolles L., Marchais H., Soucé M., Hervé K., Dubois P., Chourpa I. // Chem. Pharm. Bull. 2007. Vol. 55. P. 1006. doi: 10.1248/cpb.55.1006
  23. Smolobochkin A.V., Gazizov A.S., Yakhshilikova L.J., Bekrenev D.D., Burilov A.R., Pudovik M.A., Lyubina A.P., Amerhanova S.K., Voloshina A.D. // Chem. Biodivers. 2022. Vol. 19. Р. e202100970. doi: 10.1002/cbdv.202100970

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies