Kinetic stability and glass-forming ability of phenacetin by fast scanning calorimetry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the present work, an amorphous active pharmaceutical ingredient, phenacetin, was obtained by fast scanning calorimetry. The critical cooling rate and kinetic fragility of its supercooled melt were determined. The process of cold crystallization of phenacetin was studied by methods of isothermal and non-isothermal kinetics. It was found that the best correspondence between the two kinetic approaches is observed in the case of using the Nakamura crystallization model. The results obtained can find their application in the development of approaches to obtaining amorphous forms of drugs prone to crystallization.

Sobre autores

S. Lapuk

A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

A. Gerasimov

A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: alexander.gerasimov@kpfu.ru

Bibliografia

  1. Schittny A., Huwyler J., Puchkov M. // Drug Deliv. 2020. Vol. 27. P. 110. doi: 10.1080/10717544.2019.1704940
  2. Bhujbal S.V., Mitra B., Jain U., Gong Y., Agrawal A., Karki S., Taylor L.S., Kumar S., Zhou Q.T. // Acta Pharm. Sin. 2021. Vol. 11. P. 2505. doi: 10.1016/j.apsb.2021.05.014
  3. Alzahrani A., Nyavanandi D., Mandati P., Youssef A.A.A., Narala S., Bandari S., Repka M. // Int. J. Pharm. 2022. Vol. 624. P. P. 121951. doi: 10.1016/j.ijpharm.2022.121951
  4. Jennotte O., Koch N., Lechanteur A., Evrard B. // Int. J. Pharm. 2020. Vol. 580. P. 119200. doi: 10.1016/j.ijpharm.2020.119200
  5. Qiang W., Löbmann K., McCoy C.P., Andrews G.P., Zhao M. // Pharmaceutics. 2020.Vol. 12. P. 1. doi: 10.3390/pharmaceutics12070655
  6. Wang B., Liu F., Xiang J., He Y., Zhang Z., Cheng Z., Liu W., Tan S. // Int. J. Pharm. 2020. Vol. 594. P. 120165. doi: 10.1016/j.ijpharm.2020.120165
  7. Smeets A., Koekoekx R., Ruelens W., Smet M., Clasen C., Van den Mooter G. // Int. J. Pharm. 2019. Vol. 574. P. 118885. doi: 10.1016/j.ijpharm.2019.118885
  8. Jakubowska E., Lulek J. // J. Drug Deliv. Sci. Technol. 2021. Vol. 62. P. 102357. doi: 10.1016/j.jddst.2021.102357
  9. Swallen S.F., Kearns K.L., Mapes M.K.,. Kim Y.S., McMahon R.J., Ediger M.D., Wu T., Yu L., Satija S. // Science. 2007. Vol. 315. P. 353 doi: 10.1126/science.1135795
  10. Ma X.,Williams R.O. // J. Drug Deliv. Sci. Technol. 2019. Vol. 50. P. 113. doi: 10.1016/j.jddst.2019.01.017
  11. Razuc M., Grafia A., Gallo L., Ramírez-Rigo M.V., Romañach R.J. // Drug Dev. Ind. Pharm. 2019. Vol. 45. P. 1565. doi: 10.1080/03639045.2019.1641510
  12. Dołęga A., Juszyńska-Gałązka E., Deptuch A., Baran S., Zieliński P.M. // Thermochim. Acta. 2021. Vol. 707. P. 1 doi: 10.1016/j.tca.2021.179100
  13. Wabuyele B.W., Sotthivirat S., Zhou G.X., Ash J., Dhareshwar S.S. // J. Pharm. Sci. 2017. Vol. 106. P. 579. doi: 10.1016/j.xphs.2016.10.014
  14. Chmiel K., Knapik-Kowalczuk J., Jachowicz R., Paluch M. // Eur. J. Pharm. Biopharm. 2019. Vol. 136. P. 231. doi: 10.1016/j.ejpb.2019.01.025
  15. Ivanisevic I., McClurg R.B., Schields P.J. In: Pharmaceutical Sciences Encyclopedia. 2010. P. 1. doi: 10.1002/9780470571224.pse414
  16. Lapuk S.E., Ziganshin M.A., Larionov R.A., Mukhametzyanov T.A., Schick C., Gerasimov A.V. // J. Non-Cryst. Solids. 2023. Vol. 600. P. 122038. doi: 10.1016/j.jnoncrysol.2022.122038
  17. Minakov A., Morikawa J., Zhuravlev E., Ryu M., Van Herwaarden A. W., Schick C. // J. Appl. Phys. 2019. Vol. 125. P. 1. doi: 10.1063/1.5066384
  18. Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. // Thermochim. Acta. 2020. Vol. 689. P. 178597. doi: 10.1016/j.tca.2020.178597
  19. Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. Vol. 520. P. 1. doi: 10.1016/j.tca.2011.03.034
  20. Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2014. Vol. 590. P. 1. doi: 10.1016/j.tca.2014.05.036
  21. Baghel S., Cathcart H., Redington W., O'Reilly N.J. // Eur. J. Pharm. Biopharm. 2016. Vol. 104. P. 59. doi: 10.1016/j.ejpb.2016.04.017
  22. Chattoraj S., Bhugra C., Li Z.J., Sun C.C. // J. Pharm. Sci. 2014. Vol. 103. P. 3950. doi: 10.1002/jps.24204
  23. Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes. New York: Springer Cham, 2015. P. 1. doi: 10.1007/978-3-319-14175-6_1
  24. Qiao J.C., Pelletier J.M. // Intermetallics. 2010. Vol. 19. P. 9. doi: 10.1016/j.intermet.2010.08.042
  25. Alvarez C., Correia N.T., Moura Ramos J.J., Fernandes A.C. // Polymer. 2000. Vol. 41. P. 2907. doi: 10.1016/S0032-3861(99)00445-0
  26. Moura Ramos J.J., Taveira-Marques R., Diogo H.P. // J. Pharm. Sci.2004. Vol. 93. P. 1503. doi: 10.1002/jps.20061
  27. Moynihan A.J. Easteal C.T., Wilder J., Tucker J. // J. Phys. Chem. 1974. Vol. 78. P. 2673. doi: 10.1021/j100619a008
  28. Svoboda R. // J. Therm. Anal. Calorim. 2014. Vol. 118. P. 1721. doi: 10.1007/s10973-014-4077-8
  29. Crowley K.J., Zografi G. // Thermochim. Acta. 2001. Vol. 380. P. 79. doi: 10.1016/S0040-6031(01)00662-1
  30. Baird J.A., Van Eerdenbrugh B., Taylor L.S. // J. Pharm. Sci. 2010. Vol. 99. P. 3787. doi: 10.1002/jps.22197
  31. Zhou D., Zhang G.G.Z., Law D., Grant D.J.W., Schmitt E.A. // J. Pharm. Sci. 2002. Vol. 91. P. 1863. doi: 10.1002/jps.10169
  32. Yu L. // Adv. Drug Deliv. Rev. 2001. Vol. 48. P. 27. doi: 10.1016/S0169-409X(01)00098-9
  33. Lapuk S.E., Zubaidullina L.S., Ziganshin M.A., Mukhametzyanov T.A., Schick C., Gerasimov A.V. // Int. J. Pharm. 2019. Vol. 562. P. 113. doi: 10.1016/j.ijpharm.2019.03.039
  34. Van Herwaarden S., Iervolino E., Van Herwaarden F., Wijffels T., Leenaers A., Mathot V. // Thermochim. Acta. 2011. Vol. 522. P. 46. doi: 10.1016/j.tca.2011.05.025
  35. Friedman H.L. // J. Polym. Sci. Part C Polym. Symp. 2007. Vol. 6. P. 183. doi: 10.1002/polc.5070060121
  36. Akahira T., Sunose T. // Res. Rep. Chiba Inst. Technol. 1971. Vol. 16. P. 22.
  37. Manić N., Janković B., Dodevski V. // J. Therm. Anal. Calorim. 2021. Vol. 143. P. 3419. doi: 10.1007/s10973-020-09675-y

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies