Enaminoketones - functional derivatives based on 7-hydroxy-3′,3′-dimethyl-3′H-spiro[chromen-2,1′-isobenzofuran]-8-carbaldehyde with aromatic amines. physicochemical studies and biological activity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This research focuses on studying derivatives of 2-oxaindane spiropyran by its condensation with aromatic amines. The results showed that all the synthesized compounds are enaminoketones form in both solution and solid state. This is explained by the fact that during the formation of Schiff bases, the proton of the 7-hydroxyl group of the benzopyran part migrates to the azomethine nitrogen, which leads to the transition of the cyclic form of spiropyran into the corresponding enaminoketone. In the DMSO solution, the enaminoketones dynamic equilibrium of the E , Z -isomeric forms were observed. The structure of enaminoketone based on 3,4-dimethylaniline was proved by the X-ray diffraction method. The synthesized compounds were studied for their in vitro anticancer activity against human hepatocellular carcinoma (HepG2), breast carcinoma (MCF-7), lung cancer (A549), and carcinoma cells (KB). Enaminoketone with R = 3,4-СH3Ph is characterized by the highest activity, with IC50 values of 13.38 μM (KB). The results in vitro antioxidant activity test using 1,1-diphenyl-2-picrylhydrazyl (DPPH) indicated that enaminoketones were inactive.

Авторлар туралы

X. Nguyen

Southern Federal University;Institute of Chemistry, Vietnam Academy of Science and Technology

A. Zantman

Southern Federal University

A. Bulanov

Southern Federal University

Email: aobulanov@sfedu.ru

T. Nguyen

Institute for Tropical Technology, Vietnam Academy of Science and Technology

L. Tran

Institute for Tropical Technology, Vietnam Academy of Science and Technology

H. Vu

Hanoi University of Science and Technology

B. Duong

Institute for Tropical Technology, Vietnam Academy of Science and Technology;Office of the State Council for Professorship, Ministry of Education and Training

V. Lazarenko

National Research Center “Kurchatov Institute”

I. Shcherbakov

Southern Federal University

Әдебиет тізімі

  1. Guglielmetti R. Photochromism: molecules and systems. Amsterdam: Elsevier, 1990. doi: 10.1016/B978-0-444-51322-9.X5000-3
  2. Bouas-Laurent H., Durr H. // Pure Appl. Chem. 2001. Vol. 73. N 4. P. 639. doi: 10.1351/pac200173040639
  3. Tian H., Zhang J. Photochromic Materials: Preparation, Properties and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co, 2016.
  4. Bertelson R.C. In: Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry / Eds J.C. Crano, R.J. Guglielmetti. Boston: Springer, 2002. P. 11. https://doi.org/10.1007/0-306-46911-1_2
  5. Minkin V.I. // Chem. Rev. 2004. Vol. 104. P. 2751. doi: 10.1021/cr020088u
  6. Klajn R. // Chem. Soc. Rev. 2014. Vol. 43. P. 148. doi: 10.1039/c3cs60181a
  7. Barachevsky V.A. // Rev. J. Chem. 2017. Vol. 7. P. 334. doi: 10.1134/S2079978017030013
  8. Aiken S., Edgar R.J.L., Gabbutt C.D., Heron B.M., Hobson P.A. // Dyes and Pigments. 2018. Vol. 149. P. 92. doi 10.1016/ j.dyepig.2017. 09.057
  9. Барачевский В.А., Валова Т.М., Атабекян Л.С., Любимов А.В. // Химия высоких энергий. 2017. Т. 51. № 6. С. 436
  10. Barachevsky V.A., Valova T.M., Atabekyan L.S., Lubimov A.-V. // High Energy Chem. 2017. Vol. 51. N 6. P. 415. doi: 10.7868/S0023119717060023
  11. Барачевский В.А., Валова Т.М. // Оптика и спектр. 2017. T. 123. № 3. C. 377
  12. Barachevsky V.A., Valova T.M. // Opt. Spectr. 2017. Vol. 123. N 3. P. 404. doi: 10.1134/S0030400X17090065
  13. Барачевский В.-А. // Рос. хим. ж. 2021. Т. 65. № 3. С. 6.
  14. Vigato P.A., Tamburini S. // Coord. Chem. Rev. 2004. Vol. 248. P.1717. doi: 10.1016/j.cct.2003.09.003
  15. Keum S.R., Ahn S.M., Lee S.H. // Dyes and Pigm. 2004. Vol. 60. N 1. P. 55. doi: 10.1016/S0143-7208(03)00138-4
  16. Keum S.R. // Dyes and Pigm. 2004. Vol. 60. N 2. P. 147. doi: 10.1016/j.dyepig.2003.07.006
  17. Nakao R., Horii T., Kushino Y., Shimaoka K., Abe Y. // Dyes and Pigm. 2002. Vol. 52. N 2. P. 95. doi: 10.1016/S0143-7208(01)00093-6
  18. Keum S.R., Ahn S.M., Roh S.J., Ma S.Y. // Dyes and Pigm. 2010. Vol. 86. N 1. P. 74. doi: 10.1016/j.dyepig.2009.12.002
  19. O'Bryan G., Wong B.M., McElhanon J.R. // Appl. Mater. Interfaces. 2010. Vol. 2. N 6. P. 1594. https://doi.org/10.1021/am100050v
  20. Sennett K.A., Lindner B.K., Kaur N., Fetner S.M., Stitzel S.E. // Dyes and Pigm. 2013. Vol. 98. N 3. P. 437. doi: 10.1016/j.dyepig.2013.03.010
  21. Del Canto, E., Flavin K., Natali M., Perova T., Giordani S. // Carbon. 2010. Vol. 48. N 10. P. 2815. doi: 10.1016/j.carbon.2010.04.012
  22. Liao B., Long P., He B., Yi S., Ou B., Shen S., Chen J. // J. Mater. Chem. (C). 2013. Vol. 1. N 23. P. 3716. doi: 10.1039/C3TC00906H
  23. Bulanov A.O., Shcherbakov I.N., Tupolova Y.P., Popov L.D., Lukov V.V., Kogan V.A., Belikov P.A. // Acta Crystallogr. (C). 2009. Vol. 65. P. o618. doi: 10.1107/S0108270109044771
  24. Bulanov A.O., Shcherbakov I.N., Popov L.D., Shasheva E.Y., Belikov P.A., Starikova Z.A. // Acta Crystallogr. (C). 2011. Vol. 67. P. o85. doi: 10.1107/S0108270111002836
  25. Попов Л.Д., Щербаков И.А., Буланов A.O., Шашева E.Ю., Ткаченко Ю.Н., Кобелева O.И., Валова T.M., Барачевский В.A. // ЖОХ. 2012. Т. 82. № 8. С.1362
  26. Popov L.D., Shcherbakov I.A., Bulanov A.O., Shasheva E.Y., Tkachenko, Y.N., Kobeleva O.I., Vyalova T.M., Barachevskii V.A. // Russ. J. Gen. Chem. 2012 Vol. 82. P. 1432. doi: 10.1134/S1070363212080166
  27. Попов Л.Д., Буланов А.О., Распопова Е.А., Морозов А.Н., Щербаков И.Н., Кобелева О.И., Валова Т.М., Барачевский В.А. // ЖОХ. 2013. Т. 83. № 6. С. 980
  28. Popov L.D., Bulanov A.O., Raspopova E.A., Morozov A.N., Scherbakov I.N., Kobeleva O.I., Valova T.M., Barachevskii V.A. // Russ. J. Gen. Chem. 2013. Vol. 83. P. 1111. doi: 10.1134/S1070363213060182
  29. Shcherbakov I.N., Bulanov A.О., Revinskii Y.V., Popov L.D. // Struct. Chem. 2019. Vol. 30. P. 1381. doi: 10.1007/s11224-019-01295-z
  30. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V., Burlov A.S., Koshchienko Y.V., Vlasenko V.G., Khrustalev V.N. // Crystals. 2017. Vol. 7. P. 325. doi: 10.3390/cryst7110325
  31. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. Vol. 55. P. 1900184. doi: 10.1002/crat.201900184
  32. Kabsch W. // Acta Crystallogr. (D). 2010. Vol. 66. P. 125. doi: 10.1107/S0907444909047337
  33. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. P. 339. doi: 10.1107/S0021889808042726
  34. Sheldrick, G. // Acta Crystallogr. (A). 2008. Vol. 64. P. 112. doi: 10.1107/S0108767307043930
  35. Sheldrick, G. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi: 10.1107/S2053229614024218
  36. Spek A. // J. Appl. Crystallogr. 2003. Vol. 36. P. 7. doi: 10.1107/S0021889802022112
  37. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani V.B.G., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda O.K.Y., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.02, 2009.
  38. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi: 10.1063/1.464913
  39. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. Vol. 105. P. 2999. doi: 10.1021/cr9904009
  40. Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005. Vol. 109. P. 2937. doi: 10.1021/jp045733a
  41. Bauernschmitt R., Ahlrichs R. // Chem. Phys. Lett. 1996. Vol. 256. P. 454. doi: 10.1016/0009-2614(96)00440-X
  42. Casida M.E., Jamorski C., Casida K.C., Salahub D.R. // J. Chem. Phys. 1998. Vol. 108. P. 4439. doi: 10.1063/1.475855
  43. Mosmann T. // J. Immunolog. Methods. 1983. Vol. 65. P. 55. doi: 10.1016/0022-1759(83)90303-4
  44. Scudiero D.A., Shoemaker R.H., Kenneth D.P., Monks A., Tierney S., Nofziger T.H., Currens M.J., Seniff D., Boyd M.R. // Cancer Res. 1988. Vol. 48. P. 4827.
  45. Malacrida A., Cavalloro V., Martino E., Cassetti A., Nicolini G., Rigolio R., Miloso M. // Molecules. 2019. Vol. 24. doi: 10.3390/molecules24132500
  46. Burits M., Bucar F. // Phytother. Res. 2000. Vol. 14. P. 323. doi: 10.1002/1099-1573(200008)14:5<323:aid-ptr621>3.0.co;2-q
  47. Chen Z., Bertin R., Froldi G. // Food Chem. 2013. Vol. 138. P. 414. doi: 10.1016/j.foodchem.2012.11.001
  48. Cuendet M., Hostettmann K., Potterat O., Dyatmiko W. // Helv. Chim. Acta. 1997. Vol. 80. P. 1144. doi: 10.1002/HLCA.19970800411

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>