Структура и устойчивость водородных соединений элементов 13/15 групп, стабилизированных кислотами и основаниями Льюиса

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Квантово-химическим методом B3LYP-D3/def2-TZVP рассчитаны структурные и термодинамические характеристики донорно-акцепторных комплексов LA·E′H2EH2·LB(E = B, Al, Ga; E’= P, As, Sb; LB = SMe2, NMe3);LA- кислоты Льюиса на основе элементов 13 группы ER3 (E = B, Al, Ga; R = H, Me, F, Cl, Br, I, C6F5)и карбонилы переходных металлов Fe(CO)4, M(CO)5, (M = Cr, Mo, W), CpMn(CO)2. Показано, что отрыв основания Льюиса менее эндотермичен, чем кислоты Льюиса. Выявлены ряды изменения устойчивости комплексов в зависимости от природы элементов 13 и 15 групп и кислоты Льюиса. Наибольший стабилизирующий эффект оказывает W(CO)5.

Об авторах

А. В Помогаева

Санкт-Петербургский государственный университет

А. С Лисовенко

Санкт-Петербургский государственный университет

А. Ю Тимошкин

Санкт-Петербургский государственный университет

Email: a.y.timoshkin@spbu.ru

Список литературы

  1. Staubitz A., Robertson A.P.M., Sloan M.E., Manners I. // Chem. Rev. 2010. Vol. 110. P. 4023. doi: 10.1021/cr100105a
  2. Vogel U., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2001. Vol. 40. P. 4409. doi: 10.1002/1521-3773(20011203)40:23<4409::AID-ANIE4409>3.0.CO;2-F
  3. Schwan K.-C., Timoshkin A.Y., Zabel M., Scheer M. // Chem.-Eur. J. 2006, Vol. 12. P. 4900. doi: 10.1002/chem.200600185
  4. Marquardt C., Adolf A., Stauber A., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2013. Vol. 19. P. 11887. doi: 10.1002/chem.201302110
  5. Butlak A.V., Kazakov I.V., Stauber A., Hegen O., Scheer M., Pomogaeva A.V., Timoshkin A.Y. // Eur. J. Inorg. Chem. 2019. Vol. 35. P. 3885. doi: 10.1002/ejic.201900817
  6. Marquardt C., Hegen O., Hautmann M., Balazs G., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2015. Vol. 54. P. 13122. doi: 10.1002/anie.201505773
  7. Pomogaeva A.V., Lisovenko A.S., Zavgorodnii A.S., Timoshkin A.Y. // J. Comput. Chem. 2023. Vol. 44. N 3. P. 218. doi: 10.1002/jcc.26867
  8. Vogel U., Hoemensch P., Schwan K.-C., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2003. Vol. 9. P. 515. doi: 10.1002/chem.200390054
  9. Vogel U., Timoshkin A.Y., Schwan K.-C., Bodensteiner M., Scheer M. // J. Organomet. Chem. 2006. Vol. 691. P. 4556. doi: 10.1016/j.jorganchem.2006.04.014
  10. Schwan K.-C., Adolf A., Thoms C., Zabel M., Timoshkin A.Y., Scheer M. // Dalton Trans. 2008. P. 5054. doi: 10.1039/B809773A
  11. Marquardt C., Kahoun T., Baumann J., Timoshkin A.Y., Scheer M. // Z. anorg. allg. Chem. 2017. Vol. 643. P. 1326. doi: 10.1002/zaac.201700219
  12. Hegen O., Marquardt C., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2017. Vol. 56. P. 12783. doi: 10.1002/anie.201707436
  13. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384. doi: 10.1021/jp953141+
  14. Ketkov S., Rychagova E., Kather R., Beckmann J. // J. Organomet. Chem. 2021. Vol. 949. P. 121944. doi: 10.1016/j.jorganchem.2021.121944
  15. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D.,Ding F.,Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
  16. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 1372. doi: 10.1063/1.464304
  17. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
  18. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Vol. 132. P. 154104. doi: 10.1063/1.3382344
  19. Weigend F., Ahlrichs R. // Phys Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi: 10.1039/B508541A.
  20. Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: John Wiley and Sons, 2004, Р. 357.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах