Synthesis and study of dense materials in the Zr–Al–C system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The initial powders Zr, Al, C and Zr, Al, Sc were used for the synthesis of MAX phases of the composition Zr2AlC and Zr3AlC2. The highest content (50.4 vol%) of the MAX phase Zr3AlC2 was obtained using the initial powders Zr/Al/Zr in the ratio of components 1:1.5:2 with the addition of 5 vol% Al. The optimal temperature for the synthesis of a material based on the MAX phase Zr2AlC is 1525° C, a material based on Zr3AlC2 is 1575°C. The structure of the synthesized MAX materials obtained includes elongated grains of the composition Zr2AlC and Zr3AlC2, which determines their high strength. Zirconium carbide, as an intermediate phase, is always present in the final products. Due to the large evaporation of aluminum, the ZrO2 phase is also present in the synthesis products. Excess aluminum contributes to the greatest formation of Zr2AlC and Zr3AlC2 phases during synthesis.

About the authors

I. E Arlashkin

St. Petersburg State Institute of Technology (Technical University);I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: iarlashkin@mail.ru

S. N Perevislov

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

V. L Stolyarova

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences;St. Petersburg State University

References

  1. Медведева Н.И., Еняшин А.Н., Ивановский А.Л. // ЖCХ. 2011. Т. 52. № 4. С. 806
  2. Medvedeva N.I., Enyashin A.N., Ivanovskii A.L. // J. Struct. Chem. 2011. Vol. 52. P. 785. doi: 10.1134/S0022476611040226
  3. Barsoum M.W. // Progress Solid State Chem. 2000. Vol. 28. N 1-4. P. 201. doi: 10.1016/S0079-6786(00)00006-6
  4. Istomin P.V., Nadutkin A.V., Ryabkov Y.I., Goldin B.A. // Inorg. Mater. 2006. Vol. 42. N 3. P. 250. doi: 10.1134/S0020168506030071
  5. Zhang Z.F., Sun Z.M., Hashimoto H. // Mater. Lett. 2003. Vol. 57. N 7. P. 1295. doi: 10.1016/S0167-577X(02)00974-6
  6. El-Raghy T., Barsoum M.W. // J. Am. Ceram. Soc. 1999. Vol. 82. N 10. P. 2849. doi: 10.1111/j.1151-2916.1999.tb02166.x
  7. Gao N.F., Miyamoto Y., Zhang D. // J. Mater. Sci. 1999. Vol. 34. N 18. P. 4385. doi: 10.1023/A:1004664500254
  8. Jeitschko W., Nowotny H., Benesovsky F. // Monatsh. Chem. 1964. Vol. 95. N 1. P. 178. doi: 10.1007/BF00913068
  9. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. Vol. 267. P. 124625. doi: 10.1016/j.matchemphys.2021.124625
  10. Bykova A.D., Semenova V.V., Perevislov S.N., Markov M.A. // Refract. Ind. Ceram. 2021. Р. 89. doi: 10.1007/s11148-021-00564-x
  11. Перевислов С.Н., Семенова В.В., Лысенков А.С. // ЖНХ. 2021. Т. 66. № 8. С. 987
  12. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. Р. 1100. doi: 10.1134/S0036023621080210
  13. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. P. 215. doi: 10.1007/s11148-022-00709-6
  14. Lapauw T., Lambrinou K., Cabioc'h T., Halim J., Lu J., Pesach A., Rivinf O., Ozeri O., Caspi E.N., Hultman L., Eklund P., Rosén J., Barsoum M.W., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 8. P. 1847. doi: 10.1016/j.jeurceramsoc.2016.02.044
  15. Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M.W., Lambrinou K., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 3. P. 943. doi: 10.1016/j.jeurceramsoc.2015.10.011
  16. Okamoto H. // J. Phase Equilib. Diff. 2002. Vol. 23. N 5. P. 455. doi: 10.1361/105497102770331497
  17. Wang T., Jin Z., Zhao J.C. // J. Phase Equilib. 2001. Vol. 22. N 5. P. 544. doi: 10.1007/s11669-001-0072-4

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies