Selective oxidation of the 4-ethyl-3-methylcinnoline methylene group by al2o3-supported chromium oxide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The optimal conditions for the oxidation of the methylene group in 4-ethyl-3-methylcinnoline to the corresponding ketone, 3-methyl-4-acetylcinnoline, were selected. It was shown that preliminary deposition of 4-ethyl-3-methylcinnoline on some inorganic substrates has a significant effect both on the selectivity of the oxidation of only the methylene group and on a high degree of conversion to the target product.

Sobre autores

S. Chikunov

Institute of Chemistry, Tyumen State University;Tyumen State University

E. Balakina

Institute of Chemistry, Tyumen State University

I. Kulakov

Institute of Chemistry, Tyumen State University;Tyumen State University

Email: i.v.kulakov@utmn.ru

Bibliografia

  1. Bekhit A.A. // Boll. Chim. Farm. 2001. Vol. 140. N 4. P. 243.
  2. Chen C.J., Deng A.J., Liu C., Shi R., Qin H.L., Wang A.P. // Molecules. 2011. Vol. 16. N 11. P. 9049. doi: 10.3390/molecules16119049
  3. Tonk R.K., Bawa S., Chawla G., Deora G.S., Kumar S., Rathore V., Mulakayala N., Rajaram A., Kalle A.M., Afzal O. // Eur. J. Med. Chem. 2012. Vol. 57. P. 176. doi: 10.1016/j.ejmech.2012.08.045
  4. Alvarado M., Barceló M., Carro L., Masaguer C.F. // Chem. Biodivers. 2006. Vol. 3. N 1. P. 106. doi: 10.1002/cbdv.200690001
  5. Gautam N., Chourasia O. // Ind. J. Chem. (B). 2010. Vol. 49. P. 830.
  6. Unnissa S.H., Nisha N., Reddy G.K. // J. Appl. Pharm. Sci. 2015. Vol. 5. N 11. P. 121. doi: 10.7324/JAPS.2015.501121
  7. Szumilak M., Stanczak A. // Molecules. 2019. Vol. 24. P. 2271. doi: 10.3390/molecules24122271
  8. Kandeel M.M., Kamal A.M., Naguib B.H., Hassan M.A. // Anticancer Agents Med. Chem. 2018. Vol. 18. N 8. P. 1208. doi: 10.2174/187152061866618022012131
  9. Tian C., Yang C., Wu T., Lu M., Chen Y., Yang Y., Liu X., Ling Y., Deng M., Jia Y., Zhou Y. // Bioorg. Med. Chem. Lett. 2021. Vol. 15. N 48. Article ID 128271. doi: 10.1016/j.bmcl.2021.128271
  10. Richter V. // Ber. 1883. Vol. 16. N 1. P. 677.
  11. Виноградова О., Балова И. // ХГС. 2008. № 5. С. 643
  12. Vinogradova O., Balova I. // Chem. Heterocycl. Compd. 2008. Vol. 44. P. 501. doi: 10.1007/s10593-008-0070-0
  13. Kulakov I.V., Stalinskaya A.L., Chikunov S.Y., Gatilov Y.V. // New J. Chem. 2021. Vol. 45. N 7. P. 3559. doi: 10.1039/D0NJ06117D
  14. Sun P., Wu Y., Huang Y., Wu X., Xu J., Yao H., Lin A. // Org. Chem. Front. 2016. Vol. 3. N 1. P. 91. doi: 10.1039/C5QO00331H
  15. Xia H.D., Zhang Y.D., Wang Y.H., Zhang C. // Org. Lett. 2018. Vol. 20. N 13. P. 4052. doi: 10.1021/acs.orglett.8b01615
  16. Simpson J.C. // J. Chem. Soc. 1946. P. 673-675. doi: 10.1039/JR9460000673
  17. Heber D. // Der Pharmazie. 1987. Vol. 320. N 5. P. 402. doi: 10.1002/ardp.19873200505
  18. Warpehoski M.A., Chabaud B., Sharpless K.B. // J. Org. Chem. 1982. Vol. 47. N 15. P. 2897. doi: 10.1021/jo00136a017
  19. Hruszkewycz D.P., Miles K.C., Thiel O.R., Stahl S.S. // Chem. Sci. 2017. Vol. 8. N 2. P. 1282. doi: 10.1039/C6SC03831J
  20. Dali A., Rekkab-Hammoumraoui I., ChoukchouBraham A., Bachir R. // RSC Adv. 2015. Vol. 5. N 37. P. 29167. doi: 10.1039/c4ra17129b
  21. Abboud M. // Mechanisms and Catalysis. 2020. Vol. 131. N 2. P. 781. doi: 10.1007/s11144-020-01864-y

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies