Synthesis, anticholinesterase and anti-radical activity of 2,3,5-trisubstituted 4H-imidazol-4-ones, green fluorescent protein chromophore analogues

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The one-pot synthesis of N -substituted α,β-dehydrotyrosyl dipeptides was carried out by the azlactone method. The target dipeptides were obtained in good yields (53-79%). From the latter, 2,3,5-trisubstituted 4-imidazolones were obtained using 1,1,1,3,3,3-hexamethyldisilazane as a dehydrating agent. It was found that in the case of β-alanine-containing peptides, abstraction of the methyl ester of acrylic acid and the formation of 2,5-disubstituted 4-imidazoline were observed. Antiradical and anticholinesterase properties of the synthesized compounds were studied. Docking analysis was carried out for both some dipeptides and imidazole-4-ones.

Sobre autores

V. Topuzyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of the Republic of Armenia

S. Tosunyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of the Republic of Armenia

A. Makichyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of the Republic of Armenia;Russian-Armenian University

Email: ani.makichyan@rau.am

E. Hakobyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of the Republic of Armenia

L. Galstyan

Yerevan State University

A. Hovhannisyan

Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of the Republic of Armenia

Bibliografia

  1. Shimomura O. // FEBS Lett. 1979. Vol. 104. P. 220. doi: 10.1016/0014-5793(79)80818-2
  2. Топузян В.О., Казоян В.М. // Докл. НАН Армении. 2018. T. 118. C. 268.
  3. Топузян В.О., Казоян В.М., Тамазян Р.А., Айвазян А.Г., Галстян Л.Х. // ЖОрХ. 2018. T. 54. C. 1355
  4. Topuzyan V.O., Kazoyan V.M., Tamazyan R.A., Aivazyan A.G., Galstyan L.Kh. // Russ. J. Org. Chem. 2018. Vol. 54. P. 1369. doi: 10.1134/S1070428018090178
  5. Топузян В.О., Оганесян А.А., Казоян В.М., Алексанян Е.Р. // Докл. НАН Армении. 2019. Т. 119. С. 162.
  6. Оганесян А.А., Оганнесян Н.А., Тосунян С.Р., Топузян В.О. // Докл. НАН Армении. 2021. Т. 121. С. 61.
  7. Топузян В.О., Оганесян А.А., Тосунян С.Р., Тамазян Р.А., Айвазян А.Г., Макичян А.Т. // ЖОХ. 2022. Т. 92. С. 1356. doi: 10.31857/S0044460X22090049
  8. Topuzyan V.O., Hovhannisyan A.A., Tosunyan S.R., Tamazyan R.A., Aivazyan A.G., Makichyan A.T. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 1610. doi: 10.1134/S1070363222090043
  9. Меншикова Е.Б., Ланкин В.З., Кандалинцева Х.В. Фенольные антоксиданты в биологии и медицине. Строение, свойства, механизмы действия. LAP Lambert Academic Publishing, 2012. C. 488.
  10. Топузян В.О., Оганесян А.А., Макичян А.Т., Унанян Л.С. // ЖОХ. 2022. T. 92. C. 755. doi: 10.31857/S0044460X22050110
  11. Topuzyan V.O., Hovhannisyan A.A., Makichyan A.T., Hunanyan L.S. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 819. doi: 10.1134/S1070363222050115
  12. Zhu Q.Y., Hackman R.M., Ensunsa J.L. // J. Agric. Food Chem. 2002. Vol. 50. P. 6929. doi: 10.1021/jf0206163
  13. Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. Vol. 7. Article no. 42717. doi: 10.1038/srep42717
  14. Cheng F., Liu C., Jiang J., Lu W., Li W., Liu G., Zhou W., Huang J., Tang Y. // PLoS Comput. Biol. 2012. doi: 10.1371/journal.pcbi.1002503
  15. Egan W.J., Merz K.M., Jr., Baldwin J.J. // J. Med. Chem. 2000. Vol. 43. N 21. P. 3867. doi: 10.1021/jm000292e
  16. Lipinski C. // Drug Discovery Today: Technologies. 2004. Vol. 1. N 4. P. 337. doi: 10.1016/j.ddtec.2004.11.007
  17. Martin Y.C. // J. Med. Chem. 2005. Vol. 48. P. 3164. doi: 10.1021/jm0492002
  18. Abdel-Galil E., Moawad E.B., El-Mekabaty A., Said G.E. // J. Heterocycl. Chem. 2018. Vol. 55. P. 1092. doi: 10.1002/jhet.3139
  19. Oганесян А.А., Макичян А.Т., Топузян В.О., Оганнесян Н.А. // Хим. ж. Армении. 2020. T. 73. № 4. С. 381.
  20. Narayanaswamy V.K., Rissdörfer М., Odhav B. // Int. J. Theor. Appl. Sci. 2013. Vol. 5. № 2. P. 43.
  21. Evans M.J., Moore J.S. // J. Chem. Educ. 2011. Vol. 88. P. 764. doi: 10.1021/ed100517g
  22. Burley S.K., Bhikadiya C., Bi C., Chen L., Di Costanzo L., Christie C., Dalenberg K., Duarte J.M., Dutta S., Feng Z., Ghosh S., Goodsell D.S., Green R.K., Guranovic V., Guzenko D., Hudson B.P., Liang Y., Lowe R., Namkoong H., Peisach E., Periskova I., Prlic A., Randle C., Rose A., Rose P., Sala R., Sekharan M., Shao C., Tan L., Tao Y.P., Valasatava Y., Voigt M., Westbrook J., Woo J., Yang H., Young J., Zhuravleva M., Zardecki C. // Nucl. Acids Res. 2021. Vol. 49. P. 437. doi: 10.1093/nar/gkaa1038
  23. Trott O., Olson A.J. // J. Comput. Chem. 2010. Vol. 31. N 2. P. 455. doi: 10.1002/jcc.21334
  24. BIOVIA Discovery Studio (2017) R2: A comprehensive predictive science application for the Life Sciences, San Diego, USA. https://discover.3ds.com/discovery-studio-visualizer-downlo
  25. Yang H., Lou C., Sun L., Li J., Cai Y., Wang Z., Li W., Liu G., Tang Y. // Bioinformatics. 2018. Vol. 35. N 6. P.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies