Electronic State of Arsenic endo-atom and indices of interatomic bonds in[As@Ni12As20]3-/0, As20, Ni12As20, As@C60, and As@C70 Clusters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The DFT PBE0/SDD method was used to calculate bond lengths and bond indices in As20, Ni12As20, [As@Ni12As20]3-, As@C60 and As@C70 clusters. The degrees of oxidation and reduction of the endo -atom and the shell are expressed in terms of the populations of one-electron states localized in these components of the complexes. Each As atom in clusters has a entirely localized lone electron pair. The arsenic atom inside fullerenes retains the electronic configuration and spin of the ground state of the free As atom. Inside the [Ni12As20]6- shell, it has an oxidation state of 3+. There is no covalent bond between the endo -atom and the shell in clusters. The bond indices refute the opinion about the “onion” structure of [As@Ni12@As20]3-: the nickel atoms are not bonded to each other, the As-As bond indices are three times lower than in As20.

About the authors

S. G Semenov

B.P. Konstantinov Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”

M. E Bedrina

St. Petersburg State University

Email: m.bedrina@mail.ru

V. A Klemeshev

St. Petersburg State University

References

  1. Moses M.J., Fettinger J.C., Eichhorn B.W. // Science. 2003. Vol. 300. N 5620. P. 778. doi: 10.1126/science.1082342
  2. Liu H.-T., Li J.-M. // Chin. Phys. 2005. Vol. 14. N 10. P. 1974. doi: 10.1088/1009-1963/14/10/010
  3. Baruah T., Zope R.R., Richardson S.L., Pederson M.R. // Phys. Rev. (B). 2003. Vol. 68. N 24. P. 241404. doi: 10.1103/PhysRevB.68.241404
  4. MacLeod Carey D., Morales-Verdejo C., Munoz-Castro A. // Chem. Phys. Lett. 2015. Vol. 638. P. 99. doi: 10.1016/j.cplett.2015.08.039
  5. King R.B., Zhao J. // Chem. Commun. 2006. N 40. P. 4204. doi: 10.1039/B607895H
  6. McWeeny R. // J. Chem. Phys. 1951. Vol. 19. N 12. P. 1614. doi: 10.1063/1.1748146
  7. Mulliken R.S. // J. Chem. Phys. 1955. Vol. 23. N 10. P. 1833. doi: 10.1063/1.1740588
  8. Giambiagi M., Giambiagi M., Grempel D.R., Heymann C.D. // J. Chim. Phys. 1975. Vol. 72. N 1. P. 15. doi: 10.1051/jcp/1975720015
  9. Giambiagi M. de, Giambiagi M., Jorge F.E. // Z. Naturforsch. 1984. Vol. 39a. N 12. P. 1259.
  10. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. Vol. 77. N 18. P. 3865. doi: 10.1103/PhysRevLett.77.3865
  11. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Rev. C.01. Wallingford CT, Gaussian, Inc., 2013.
  12. Семенов С.Г., Бедрина М.Е., Клемешев В.А., Макарова М.В. // Оптика и спектр. 2014. Т. 117. № 4. С. 534. doi: 10.7868/S0030403414100195
  13. Semenov S.G., Bedrina M.E., Klemeshev V.A., Makarova M.V. // Opt. Spectrosc. 2014. Vol. 117. N 4. P. 173. doi: 10.1134/S0030400X14100191
  14. Семенов С.Г., Бедрина М.Е., Клемешев В.А., Титов А.В. // ЖОХ 2021. Т. 91. Вып. 2. С. 290. doi: 10.31857/S0044460X2102013X
  15. Semenov S.G., Bedrina M.E., Klemeshev V.A., Titov A.V. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 241. doi: 10.1134/S1070363221020134
  16. BelBruno J.J. // Fullerenes, Nanotubes and Carbon Nanostruct. 2002. Vol. 10. N 1. P. 23. doi: 10.1081/FST-120002927
  17. Tsetseris L. // J. Phys. Chem. (C). 2011. Vol. 115. P. 3528. doi: 10.1021/jp108277v
  18. Hashikawa Y., Murata M., Wakamiya A., Murata Y. // J. Am. Chem. Soc. 2016. Vol. 138. N 12. P. 4096. doi: 10.1021/jacs.5b12795
  19. Вилков Л.В., Мастрюков В.С., Садова Н.И. Определение геометрического строения свободных молекул. Л.: Химия, 1978. С. 210.
  20. Бараш Ю.С. Силы Ван-дер-Ваальса. М.: Наука. Гл. ред. физ.-мат. лит., 1988. С. 12.
  21. Уэллс А. Структурная неорганическая химия. М.: Мир, 1987. Т. 2. С. 501.
  22. Born M. // Z. Phys. 1920. Bd 1. S. 45. doi: 10.1007/BF01881023
  23. Tomasi J., Persico M. // Chem. Rev. 1994. Vol. 94. N 7. P. 2027. doi: 10.1021/cr00031a013
  24. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. Vol. 105. N 8. P. 2999. doi: 10.1021/cr9904009
  25. Семенов С.Г., Макарова М.В. // ЖОХ. 2015. Т. 85. Вып. 4. С. 648
  26. Semenov S.G., Makarova M.V. // Russ. J. Gen. Chem. 2015. Vol. 85. N 4. P. 889. doi: 10.1134/S1070363215040210

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies