Photo- And Ionochromic Diarylethenes with Receptor Fragments in The Thiazole Bridge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Diarylethenes containing coumarin and thiophene substituents in the thiazole bridge and quinoline receptor fragments were synthesized. 2-Chloroquinoline diarylethenes form colored cyclic hexadiene forms under UV light, which undergo reverse isomerization when exposed to visible light. 2-Hydroxyquinoline diarylethenes are nonphotochromic. The ionochromic effects of interaction with fluoride anions and copper(II) and nickel(II) cations were studied.

About the authors

V. A Podshibyakin

Institute of Physical and Organic Chemistry, Southern Federal University

E. N Shepelenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

I. V Dubonosova

Institute of Physical and Organic Chemistry, Southern Federal University

O. Yu. Karlutova

Institute of Physical and Organic Chemistry, Southern Federal University

A. D Dubonosov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: aled@ipoc.sfedu.ru

V. A Bren

Institute of Physical and Organic Chemistry, Southern Federal University

References

  1. Komarov I.V., Afonin S., Babii O., Schober T., Ulrich A.S. In: Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Z. Pianowski. Weinheim: Wiley, 2022. P. 152.
  2. Irie M., Fukaminato T., Matsuda K. // Chem. Rev. 2014. Vol. 114. P. 12174. doi: 10.1021/cr500249p
  3. Lvov A.G. / J. Org. Chem. 2020. Vol. 85. P. 8749. doi: 10.1021/acs.joc.0c00924
  4. Irie M. // Chem. Rev. 2000. Vol. 100. P. 1685. doi: 10.1021/cr980069d
  5. Zhang J., Tian H. // Adv. Opt. Mater. 2018. Article 1701278. doi: 10.1002/adom.201701278
  6. Cheng H.B., Zhang S., Bai E., Cao X., Wang J., Qi J., Liu J., Zhao J., Zhang L., Yoon J. Adv. Mater. 2022. Vol. 34. Article 2108289. doi: 10.1002/adma.202108289
  7. Guo S., Fan C., Liu G., Pu S. // RSC Adv. 2018. Vol. 8. P. 39854. doi: 10.1039/C8RA08358D
  8. Gundogdu L., Kose M., Takeuchi S., Yokoyama Y., Orhan E. J. Lumin. 2018. Vol. 203. P. 568. doi: 10.1016/j.jlumin.2018.06.014
  9. Lv J., Fu Y., Liu G., Fan C., Pu S. // RSC Adv. 2019. Vol. 9. P. 10395. doi: 10.1039/c9ra00716d
  10. Jiang G., Shi F., Jia Y., Cui S., Pu S. // J. Fluoresc. 2020. Vol. 30. P.1567. doi: 10.1007/s10895-020-02609-9
  11. Li X., Li X., Zhao H., Kang H., Fan C., Liu G., Pu S. // J. Fluoresc. 2021. Vol. 31. P. 1513. doi: 10.1007/s10895-021-02775-4
  12. Mahesh K., Padmavathi D.A. // J. Fluoresc. 2020. Vol. 30. P. 35. doi: 10.1007/s10895-019-02444-7
  13. Indelli M.T., Carli S., Ghirotti M., Chiorboli C., Ravaglia M., Garavelli M., Scandola F. // J. Am. Chem. Soc. 2008. Vol. 130. P. 7286. doi: 10.1021/ja711173z
  14. Zhang X.C., Huo Z.M., Wang T.T., Zeng H.P. // J. Phys. Org. Chem. 2012. Vol. 25. P. 754. doi: 10.1002/poc.2914
  15. Shepelenko E.N., Podshibyakin V.A., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. // J. Mol. Struct. 2018. Vol. 1163. P. 221. doi: 10.1016/j.molstruc.2018.03.005
  16. Chemosensors: Principles, Strategies, and Applications / Eds E.V. Anslyn, B. Wang. Hoboken: Wiley, 2011.
  17. Sun W., Li M., Fan J., Peng X. // Acc. Chem. Res. 2019. Vol. 52. P. 2818. doi: 10.1021/acs.accounts.9b00340
  18. Wan H., Xu Q., Gu P., Li H., Chen D., Li N., He J., Lu J. // J. Hazard. Mater. 2021. Vol. 403. Article 123656.
  19. Daly B., Ling J., de Silva P. // Chem. Soc. Rev. 2015. Vol. 44. P. 4203. doi: 10.1039/C4CS00334A
  20. Kaur B., Kaur N., Kumar S. // Coord. Chem. Rev. 2018. Vol. 358. P. 13. doi 10.1016/ j.ccr.2017.12.002
  21. Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S. // Chem. Rev. 2015. Vol. 115. P. 7893. doi: 10.1021/cr500553d
  22. Kaur N., Kumar S. // Tetrahedron. 2011. Vol. 67. P. 9233. doi: 10.1016/j.tet.2011.09.003
  23. Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. // Chem. Soc. Rev. 2017. Vol. 46. P. 7105. doi: 10.1039/C7CS00240H
  24. Saleem M., Lee K.H. // RSC Adv. 2015. Vol. 5. P. 72150. doi 10.1039/ C5RA11388A
  25. Shi Z., Tu Y., Wang R., Liu G., Pu S. // Dyes Pigm. 2018. Vol. 149. P. 764. doi: 10.1016/j.dyepig.2017.11.051
  26. Traven V.F., Bochkov A.Y., Krayushkin M.M., Yarovenko V.N., Nabatov B.V., Dolotov S.M., Barachevsky V.A., Beletskaya I.P. // Org. Lett. 2008. Vol. 10. P. 1319. doi: 10.1021/ol800223g
  27. Joshi H.C., Antonov L. // Molecules. 2021. Vol. 26. Article 1475. doi: 10.3390/molecules26051475
  28. Li Y., Bai X., Liang R., Zhang X., Nguyen Y.H., Van Veller B., Du L., Phillips D.L. // J. Phys. Chem. (B). 2021. Vol. 125. P. 12981. doi: 10.1021/acs.jpcb.1c05798
  29. Ohsumi M., Fukaminato T., Irie M. // Chem. Commun. 2005. P. 3921. doi: 10.1039/B506801K
  30. Nourmohammadian F., Wu T.Q., Branda N.R. // Chem. Commun. 2011. Vol. 47. P. 10954. doi: 10.1039/C1CC13685B
  31. Shepelenko E.N., Revinskii Yu.V., Tikhomirova K.S., Karamov O.G., Dubonosov A.D., Bren V.A., Minkin V.I. // Mendeleev Commun. 2016. Vol. 26. P. 193. doi: 10.1016/j.mencom.2016.04.004
  32. Santos-Figueroa L.E., Moragues M.E, Climent E., Agostini A., Martınez-Manez R., Sancenon F. // Chem. Soc. Rev. 2013. Vol. 42. P. 3489. doi: 10.1039/C3CS35429F
  33. Saini R., Kaur N., Kumar S. // Tetrahedron. 2014. Vol. 70. P. 4285. doi: 10.1016/j.tet.2014.04.058
  34. Kaur N., Kaur G., Fegade U.A., Singh A., Sahoo S.K., Kuwar A.S., Singh N. // Trends Analyt. Chem. 2017. Vol. 95. P. 86. doi: 10.1016/j.trac.2017.08.003
  35. Dubonosov A.D., Bren V.A., Minkin V.I. In: Tautomerism: Concepts and Applications in Science and Technology / Ed. L. Antonov. Weinheim: Wiley-VCH. 2016. P. 229.
  36. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М., Резл В. Методы количественного органического элементного микроанализа. М.: Химия, 1987.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies