Effect of alkaline activation on the structural characteristics of nanocomposites based on carbonized chitosan and Fe-Co bimetallic nanoparticles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Metal-carbon nanocomposites consisting of Fe-Co bimetallic nanoparticles uniformly dispersed in the carbon matrix were synthesized by pyrolysis of a precursor based on chitosan and metal salts in the temperature range 500-800°C. The change in the structural characteristics of the samples after activation in the presence of potassium hydroxide was studied. It was found that alkaline activation leads to an increase in the specific surface area of the nanocomposites up to 700 m2/g and in the size of metal nanoparticles, whereas the phase composition and morphology of the carbon support remain unchanged.

作者简介

A. Vasilev

Topchiev Institute of Petrochemical Synthesis RAS

Email: raver.vasiljev@mail.ru

M. Efimov

Topchiev Institute of Petrochemical Synthesis RAS

D. Muratov

Topchiev Institute of Petrochemical Synthesis RAS

G. Karpacheva

Topchiev Institute of Petrochemical Synthesis RAS

参考

  1. Mourdikoudis S., Pallares R.M., Thanh N.T.K. // Nanoscale. 2018. Vol. 10. P. 12871. doi: 10.1039/c8nr02278j
  2. Nikolaev S.A., Tsodikov M.V., Chistyakov A.V., Chistyakova P.A., Ezzhelenko D.I., Shilina M.I. // Catal. Today. 2021. Vol. 379. P. 50. doi: 10.1016/j.cattod.2020.06.061
  3. Валецкий П.М., Сульман М.Г., Бронштейн Л.М., Сульман Э.М., Сидоров А.И., Матвеева В.Г. // Рос. нанотехнол. 2009. Т. 4. № 9-10. С. 94
  4. Valetsky P.M., Sulman M.G., Bronstein L.M., Sulman E.M., Sidorov A.I., Matveeva V.G. // Nanotechnologies in Russia. 2009. Vol. 4. P. 9. doi: 10.1134/S1995078009090092
  5. Zaleska-Medynska A., Marchelek M., Diak M., Grabowska E. // Adv. Colloid Interface Sci. 2016. Vol. 229. P. 80. doi: 10.1016/j.cis.2015.12.008
  6. Wang Y.-J., Fang B., Li H., Bi X.T., Wang H. // Prog. Mater. Sci. 2016. Vol. 82. P. 445. doi: 10.1016/j.pmatsci.2016.06.002
  7. Peng G., Gramm F., Ludwig C., Vogel F. // Catal. Sci. Technol. 2015. Vol. 5. P. 3658. doi: 10.1039/C5CY00352K
  8. Medina-Cruz D., Saleh B., Vernet-Crua A., Nieto-Argüello A., Lomelí-Marroquín D., Vélez-Escamilla L.Y., Cholula-Díaz J.L., García-Martín J.M., Webster T. In: Racing for the Surface: Antimicrobial and Interface Tissue Engineering. Switzerland: Springer Nature, 2020. P. 397. doi: 10.1007/978-3-030-34471-9_16
  9. Ragothaman M., Mekonnen B.T., Palanisamy T. // Mater. Chem. Phys. 2020. Vol. 253. P. 123405. doi: 10.1016/j.matchemphys.2020.123405
  10. Afghahi S.S.S., Shokuhfar A. // J. Magn. Magn. Mater. 2014. Vol. 370. P. 37. doi: 10.1016/j.jmmm.2014.06.040
  11. He Y., Sun W. // J. Alloys Compd. 2018. Vol. 753. P. 371. doi: 10.1016/j.jallcom.2018.04.183
  12. Chen Y., Wei J., Duyar M.S., Ordomsky V.V., Khodakov A.Y., Liu J. // Chem. Soc. Rev. 2021. Vol. 50. P. 2337. doi: 10.1039/d0cs00905a
  13. Sharma G., Kumar A., Sharma S., Naushad M., Dwivedi R.P., ALOthman Z.A., Mola G.T. // J. King Saud Univ.-Sci. 2019. Vol. 31. P. 257. doi: 10.1016/j.jksus.2017.06.012
  14. Koutsopoulos S., Barfod R., Eriksen K.M., Fehrmann R. // J. Alloys Compd. 2017. Vol. 725. P. 1210. doi: 10.1016/j.jallcom.2017.07.105
  15. Yang Z.F., Li L.Y., Te Hsieh C., Juang R.-S. // J. Taiwan Inst. Chem. Eng. 2018. Vol. 82. P. 56. doi: 10.1016/j.jtice.2017.11.009
  16. Bader N., Ouederni A. // J. Energy Storage. 2017. Vol. 13. P. 268. doi: 10.1016/j.est.2017.07.013
  17. Akbayrak S., Özçifçi Z., Tabak A. // J. Colloid Interface Sci. 2019. Vol. 546. P. 324. doi: 10.1016/j.jcis.2019.03.070
  18. Ashik U.P.M., Viswan A., Kudo S., Hayashi J. // Appl. Nanomater. 2018. P. 45. doi: 10.1016/B978-0-08-101971-9.00003-X
  19. Horlyck J., Sara M., Lovell E.C., Amal R., Scott J. // ChemCatChem. 2019. P. 1. doi: 10.1002/cctc.201900638
  20. Lam E., Luong J.H.T. // ACS Catal. 2014. Vol. 4. P. 3393. doi: 10.1021/cs5008393
  21. Vasilev A.A., Ivantsov M.I., Dzidziguri E.L., Efimov M.N., Muratov D.G., Kulikova M.V., Zhilyaeva N.A., Karpacheva G.P. // Fuel. 2022. Vol. 310. P. 122455. doi: 10.1016/j.fuel.2021.122455
  22. Yang Y., Chiang K., Burke N. // Catal. Today. 2011. Vol. 178. P. 197. doi: 10.1016/j.cattod.2011.08.028
  23. Sevilla M., Díez N., Fuertes A.B. // ChemSusChem. 2021. Vol. 14. P. 94. doi: 10.1002/cssc.202001838.
  24. Efimov M.N., Vasilev A.A., Muratov D.G., Baranchikov A.E., Karpacheva G.P. // J. Environ. Chem. Eng. 2019. Vol. 7. P. 103514. doi: 10.1016/j.jece.2019.103514
  25. Majekodunmi S.O., Olorunsola E.O., Ofiwe U.C., Udobre A.S., Akpan E. // J. Coast. Life Med. 2017. Vol. 5. P. 321. doi: 10.12980/jclm.5.2017j7-2
  26. Xue R., Shen Z. // Carbon. 2003. Vol. 41. N 9. P. 1862. doi: 10.1016/S0008-6223(03)00161-1
  27. PDF-2. The international center for diffraction data. http://www.icdd.com/translation/pdf2.html
  28. Esconjauregui S., Whelan C.M., Maex K. // Carbon. 2009. Vol. 47. P. 659. doi: 10.1016/j.carbon.2008.10
  29. Шелехов Е.В., Свиридова Т.А. // Металловедение и термическая обработка металлов. 2000. Т. 8. С. 16
  30. Shelekhov E.V., Sviridova T.A. // Metal Science and Heat Treatment. 2000. Vol. 42. P. 309. doi 10.1007/ BF02471306
  31. Taylor A., Sinclair H. // Proc. Phys. Soc. 1945. Vol. 57. P. 126
  32. Ohnuma I., Enoki H., Ikeda O., Kainuma R., Ohtani H., Sundman B., Ishida K. // Acta Materialia. 2002. Vol. 50. P. 379
  33. Ferreira M.E.H., Moutinho M.V.O., Stavale F., Lucchese M.M., Capaz R.B., Achete C.A., Jorio A. // Phys. Rev. (B). 2010. Vol 82. doi: 10.1103/PhysRevB.82.125429
  34. Vasilev A.A., Efimov M.N., Bondarenko G.N., Kozlov V.V., Dzidziguri E.L., Karpacheva G.P. // IOP Conf. Ser. Mater. Sci. Eng. 2019. Vol. 693. N 1. P. 012002. doi: 10.1088/1757-899X/ 693/1/012002

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##