Biocompatible microemulsions based on oleic acid modified with piperidinium surfactants

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A number of microemulsions based on oleic acid and Tween 80, modified with piperidinium surfactants, have been obtained and characterized. The effect of additives on the size, stability, and solubilization effect of the formed systems with respect to hydrophilic (rhodamine B) and hydrophobic (indomethacin) substances was studied. By varying the ratio of components, it was possible to form microemulsions that differ greatly in viscosity: from easy-flowing compositions to gels. The kinetic parameters describing release process of substrates from microemulsions have been obtained. In vivo tests of the anti-inflammatory action of microemulsions loaded with indomethacin have shown that the presence of piperidinium surfactants enhances the therapeutic effect of the drug. In vivo tests of the anti-inflammatory action of microemulsions loaded with indomethacin have shown that the presence of piperidinium surfactants enhances the therapeutic effect of the drug.

作者简介

A. Mirgorodskaya

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Email: mirgoralla@mail.ru

R. Kushnazarova

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

O. Lenina

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

K. Petrov

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

L. Zakharova

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

参考

  1. Yuan L., Pan M., Shi K., Hu D., Li Y., Chen Y., Qian Z. // Appl. Mater. Today. 2022. Vol. 27. P. 101438. doi: 10.1016/j.apmt.2022.101438
  2. Ibarra-Sánchez L.Á., Gámez-Méndez A., Martínez-Ruiz M., Nájera-Martínez E.F., Morales-Flores B.A., Melchor-Martínez E.M., Sosa-Hernández J.E., Parra-Saldívar R., Iqbal H.M.N. // J. Drug Delivery Sci. Technol. 2022. Vol. 70. P. 103219. doi: 10.1016/j.jddst.2022.103219
  3. Gaynanova G., Vasileva L., Kashapov R., Kuznetsova D., Kushnazarova R., Tyryshkina A., Vasilieva E., Petrov K., Zakharova L., Sinyashin O. // Molecules. 2021. Vol. 26. N 22. P. 6786. doi: 10.3390/molecules26226786
  4. Chen K., Zhang Y., Zhu L., Chu H., Huang K., Shao X., Asakiya C., Huang K., Xu W. // J. Controlled Release. Vol. 341. P. 869. doi: 10.1016/j.jconrel.2021.12.020
  5. Ponce Ponte M., Bianco M., Longhi M., Aloisio C. // J. Mol. Liq. 2022. Vol. 348. P. 118408. doi: 10.1016/j.molliq.2021.118408
  6. Саутина Н.В., Рыбакова А.И., Блохин Д.С., Клочков В.В., Галяметдинов Ю.Г. // ЖФХ. 2021. Т. 95. № 11. С. 1763
  7. Sautina N.V., Rybakova A.I., Blokhin D.S., Klochkov V.V., Galyametdinov Y.G.// Russ. J. Phys. Chem. (A). 2021. V. 95. N 11. P. 2325. doi: 10.1134/S0036024421110200
  8. Szumała P., Macierzanka A. // Int. J. Pharm. 2022. Vol. 615. P. 121488. doi: 10.1016/j.ijpharm.2022.121488
  9. Pavoni L., Perinelli D.R., Bonacucina G., Cespi M., Palmieri G.F.// Nanomaterials. 2020. Vol. 10. P. 135. doi: 10.3390/nano10010135
  10. Vu Q.L., Fang C.-W., Suhail M., Wu P.-C. // Pharmaceuticals. 2021. Vol. 14. P. 1233. doi: 10.3390/ph14121233
  11. Mehta S.K, Kaur G., Bhasin K.K. // Colloids Surf. (B). 2007. Vol. 60. P. 95. doi: 10.1016/j.colsurfb.2007.06.012
  12. Rahić O., Tucak A., Omerović N., Sirbubalo M., Hindija L., Hadžiabdić J., Vranić E. // Pharmaceutics. 2021. Vol. 13. P. 28. doi: 10.3390/pharmaceutics13010028
  13. Ramadon D., McCrudden M.T.C., Courtenay A.J. // Drug Deliv. Transl. Res. 2021. Vol. 12. P. 758. doi: 10.1007/s13346-021-00909-6
  14. Ahmady A.R., Hosseinzadeh P., Solouk A., Akbari S., Szulc A.M., Brycki B.E. // Adv. Colloid Interface Sci. 2022. Vol. 299. P. 102581. doi: 10.1016/j.cis.2021.102581
  15. Putro J.N., Ismadji S., Gunarto Ch., Soetaredjo F.E., Ju Y.H. // J. Mol. Liq. 2020. Vol. 298. P. 112034. doi: 10.1016/j.molliq.2019.112034.
  16. Mirgorodskaya A.B., Kushnazarova R.A., Lukashenko S.S., Zakharova L.Ya. // J. Mol. Liq. 2019. Vol. 292. P. 111407. doi: 10.1016/j.molliq.2019.111407
  17. Mirgorodskaya A.B., Koroleva M.Y., Kushnazarova R.A., Mishchenko E.V., Petrov K.A., Lenina O.A., Vyshtakalyuk A.B., Voloshina A.D., Zakharova L.Y. // Nanotechnology. 2022. Vol. 33. N 15. doi: 10.1088/1361-6528/ac467d
  18. Миргородская А.Б., Кушназарова Р.А., Жукова Н.А., Мамедов В.А., Захарова Л.Я. // ЖФХ. 2018. Т. 92. № 12. С. 1983
  19. Mirgorodskaya A.B., Kushnazarova R.A., Zhukova N.A., Mamedov V.A., Zakharova L.Ya. // Russ. J. Phys. Chem. (A). 2018. Vol. 92. N 12. P. 2588. doi: 10.1134/S0036024418120312
  20. Kushnazarova R.A., Mirgorodskaya A.B., Kuznetsov D.M., Tyryshkina A.A., Voloshina A.D., Gumerova S.K., Lenina O.A., Nikitin E.N., Zakharova L.Ya. // J. Mol. Liq. 2021. Vol. 336. 116318. doi: 10.1016/j.molliq.2021.116318
  21. Mirgorodskaya A.B., Kushnazarova R.A., Valeeva F.G., Lukashenko S.S., Tyryshkina A.A., Zakharova L.Ya., Sinyashin O.G. // Mendeleev Commun. 2021. Vol. 31. P. 323. doi: 10.1016/j.mencom.2021.04.014
  22. Миргородская А.Б., Кушназарова Р.А., Лукашенко С.С., Захарова Л.Я. // Изв. АН. Сер. хим. 2019. № 2. С. 328
  23. Mirgorodskaya A.B., Kushnazarova R.A., Lukashenko S.S., Zakharova L.Ya. // Russ. Chem. Bull. 2019. Vol. 68. N 2. P. 328. doi: 10.1007/s11172-019-2388-4
  24. Миргородская А.Б., Кушназарова Р.А., Лукашенко С.С., Захарова Л.Я. // ЖФХ. 2020. Т. 94. № 9. С. 1385
  25. Mirgorodskaya A.B., Kushnazarova R.A., Lukashenko S.S., Zakharova L.Ya. // Russ. J. Phys. Chem. (A). 2020. Vol. 94. N 9. P. 1902. doi: 10.1134/S0036024420090198
  26. Яцкевич Е.И., Миргородская А.Б., Захарова Л.Я., Синяшин О.Г. // Изв. АН. Сер. хим. 2015. Т. 9. С. 2232
  27. Yackevich E.I., Mirgorodskaya A.B., Zakharova L.Ya., Sinyashin O.G. // Russ. Chem. Bull. 2015. Vol. 64. N 9. P. 2232. doi: 10.1007/s11172-015-1143-8
  28. Mirgorodskaya A.B., Zakharova L.Ya., Khairutdinova E.I., Lukashenko S.S., Sinyashin O.G.n// Colloids Surf. (A). 2016. Vol. 510. P. 33. doi: 10.1016/j.colsurfa.2016.07.065
  29. Siepmann J., Peppas N.A. // Adv. Drug Delivery Rev. 2001. Vol. 48. P. 139. doi: 10.1016/S0169-409X(01)00112-0
  30. Li Q., Liu X., Byambasuren K., Wang X., Qiu S., Gao Y., Dang L., Liu Z., Shu Q., Wang Z. // J. Mol. Liq. 2020. Vol. 303. P. 112675. doi: 10.1016/j.molliq.2020.112675
  31. Bruschi M.L. Strategies to modify the drug release from pharmaceutical systems. Cambridge: Woodhead Publishing, 2015. 208 p. doi: 10.1016/C2014-0-02342-8
  32. Arifin D.Y., Lee L.Y., Wang C.H. // Adv. Drug Delivery Rev. 2006. Vol. 58. P. 1274. doi: 10.1016/j.addr.2006.09.007

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##